Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000179

ABSTRACT

The development of direct-acting antivirals (DAAs) against hepatitis C virus (HCV) has revolutionized the management of this pathology, as their use allows viral elimination in a large majority of patients. Nonetheless, HCV remains a major public health problem due to the multiple challenges associated with its diagnosis, treatment availability and development of a prophylactic vaccine. Moreover, HCV-cured patients still present an increased risk of developing hepatic complications such as hepatocellular carcinoma. In the present review, we aim to summarize the impact that HCV infection has on a wide variety of peripheral and intrahepatic cell populations, the alterations that remain following DAA treatment and the potential molecular mechanisms implicated in their long-term persistence. Finally, we consider how recent developments in single-cell multiomics could refine our understanding of this disease in each specific intrahepatic cell population and drive the field to explore new directions for the development of chemo-preventive strategies.


Subject(s)
Antiviral Agents , Hepacivirus , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatitis C/virology , Liver/metabolism , Liver/virology , Liver/pathology , Liver/drug effects , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/metabolism , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology
2.
Elife ; 122023 05 25.
Article in English | MEDLINE | ID: mdl-37227756

ABSTRACT

Promyelocytic leukemia Nuclear Bodies (PML NBs) are nuclear membrane-less organelles physically associated with chromatin underscoring their crucial role in genome function. The H3.3 histone chaperone complex HIRA accumulates in PML NBs upon senescence, viral infection or IFN-I treatment in primary cells. Yet, the molecular mechanisms of this partitioning and its function in regulating histone dynamics have remained elusive. By using specific approaches, we identify intermolecular SUMO-SIM interactions as an essential mechanism for HIRA recruitment in PML NBs. Hence, we describe a role of PML NBs as nuclear depot centers to regulate HIRA distribution in the nucleus, dependent both on SP100 and DAXX/H3.3 levels. Upon IFN-I stimulation, PML is required for interferon-stimulated genes (ISGs) transcription and PML NBs become juxtaposed to ISGs loci at late time points of IFN-I treatment. HIRA and PML are necessary for the prolonged H3.3 deposition at the transcriptional end sites of ISGs, well beyond the peak of transcription. Though, HIRA accumulation in PML NBs is dispensable for H3.3 deposition on ISGs. We thus uncover a dual function for PML/PML NBs, as buffering centers modulating the nuclear distribution of HIRA, and as chromosomal hubs regulating ISGs transcription and thus HIRA-mediated H3.3 deposition at ISGs upon inflammatory response.


Subject(s)
Interferon Type I , Promyelocytic Leukemia Nuclear Bodies , Humans , Mice , Chromatin , Histones/genetics , Interferon Type I/genetics , Transcription Factors/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL