Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Inorg Chem ; 50(3): 969-77, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21214170

ABSTRACT

A series of pyridine- and phenol-based ruthenium(II)-containing amphiphiles with bidentate ligands of the following types are reported: [(L(PyI))Ru(II)(bpy)(2)](PF(6))(2) (1), [(L(PyA))Ru(II)(bpy)(2)](PF(6))(2) (2), [(L(PhBuI))Ru(II)(bpy)(2)](PF(6)) (3), and [(L(PhClI))Ru(II)(bpy)(2)](PF(6)) (4). Species 1 and 2 are obtained by treatment of [Ru(bpy)(2)Cl(2)] with the ligands L(PyI) (N-(pyridine-2-ylmethylene)octadecan-1-amine) and L(PyA) (N-(pyridine-2-ylmethyl)octadecan-1-amine). The imine species 3 and 4 are synthesized by reaction of [Ru(bpy)(2)(CF(3)SO(3))(2)] with the amine ligands HL(PhBuA) (2,4-di-tert-butyl-6-((octadecylamino)methyl)phenol), and HL(PhClA) (2,4-dichloro-6-((octadecylamino)methyl)phenol). Compounds 1-4 are characterized by means of electrospray ionization (ESI(+)) mass spectrometry, elemental analyses, as well as electrochemical methods, infrared and UV-visible absorption and emission spectroscopies. The cyclic voltammograms (CVs) of 1-2 are marked by two successive processes around -1.78 and -2.27 V versus Fc(+)/Fc attributed to bipyridine reduction. A further ligand-centered reductive process is seen for 1. The Ru(II)/Ru(III) couple appears at 0.93 V versus Fc(+)/Fc. The phenolato-containing 3 and 4 species present relatively lower reduction potentials and more reversible redox behavior, along with Ru(II/III) and phenolate/phenoxyl oxidations. The interpretation of observed redox behavior is supported by density functional theory (DFT) calculations. Complexes 1-4 are surface-active as characterized by compression isotherms and Brewster angle microscopy. Species 1 and 2 show collapse pressures of about 29-32 mN·m(-1), and are strong candidates for the formation of redox-responsive monolayer films.

2.
Inorg Chem ; 49(16): 7226-8, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20690730

ABSTRACT

A new modular [Fe(II)(Fe(III)L(2))(3)](PF(6))(2) species with discoid (disk-like) topology exhibits redox and surfactant properties and points to a new approach for multimetallic Langmuir film precursors.

3.
Dalton Trans ; 42(43): 15296-306, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-23877838

ABSTRACT

In this paper we discuss the newly synthesized binuclear species [Cu2(L(PY18))2(µ1,1-N3)2(N3)2] (1) and [Cu2(L(PY18))2(µ1,3-SCN)2(NCS)2] (2), as obtained from the monometallic precursor [Cu(L(PY18))Br2]. These gemini metallosurfactants incorporate metal/anion cascade cores and are investigated by experimental and theoretical methods. Diagnostic IR stretches support the presence of µ1,1-bridged (end-on, 2075 cm(-1)) azide groups in 1 and µ1,3-bridged (end-to-end, 2117 cm(-1)) thiocyanate groups in 2. Anion-to-copper LMCT electronic processes at 390 and 440 nm for 1 and at 415 nm for 2 reinforce the nature of the metal/anion cascade cores. Both species are redox-active, magnetically uncoupled due to poor orbital overlap, and robust in the presence of strongly coordinating solvents. At the air-water interface, 1 and 2 yield Langmuir films with high collapse pressures of ca. 60 mN m(-1). Domain formation is considerably less extensive than that observed for the related monometallic precursor and the average molecular areas are in good agreement with their modeled molecular size. The resulting Langmuir-Blodgett films are isolated on silica substrates and investigated using IR-reflectance/absorbance spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL