Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Am Chem Soc ; 133(9): 2932-43, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21323314

ABSTRACT

Initiated by excited-state intramolecular proton transfer (ESIPT) reaction, an overall reaction cycle of 4-(2-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (o-HBDI), an analogue of the core chromophore of the green fluorescent protein (GFP), has been investigated. In contrast to the native GFP core, 4-(4-hydroxybenzylidene)-1,2-dimethyl-1H-imidazol-5(4H)-one (p-HBDI), which requires hydrogen-bonding relay to accomplish proton transfer in vivo, o-HBDI possesses a seven-membered-ring intramolecular hydrogen bond and thus provides an ideal system for mimicking an intrinsic proton-transfer reaction. Upon excitation, ESIPT takes place in o-HBDI, resulting in a ∼600 nm proton-transfer tautomer emission. The o-HBDI tautomer emission, resolved by fluorescence upconversion, is comprised of an instantaneous rise to a few hundred femtosecond oscillation in the early relaxation stage. Frequency analysis derived from ultrashort pulse gives two low-frequency vibrations at 115 and 236 cm(-1), corresponding to skeletal deformation motions associated with the hydrogen bond. The results further conclude that ESIPT in o-HBDI is essentially triggered by low-frequency motions and may be barrierless along the reaction coordinate. Femtosecond UV/vis transient absorption spectra also provide supplementary evidence for the structural evolution during the reaction. In CH(3)CN, an instant rise of a 530 nm transient is resolved, which then undergoes 7.8 ps decay, accompanied by the growth of a rather long-lived 580 nm transient species. It is thus concluded that following ESIPT the cis-proton transfer isomer undergoes cis-trans-isomerization. The results of viscosity-dependent dynamics are in favor of the one-bond-flip mechanism, which is in contrast to the volume-conserving isomerization behavior for cis-stilbene and p-HBDI. Further confirmation is given by the picosecond-femtosecond transient IR absorption spectra, where several new and long-lived IR bands in the range of 1400-1500 cm(-1) are assigned to the phenyl in-plane breathing motions of the trans-proton transfer tautomer. Monitored by the nanosecond transient absorption, the 580 nm transient undergoes a ∼7.7 µs decay constant, accompanied by the growth of a new ∼500 nm band. The latter is assigned to a deprotonated tautomer species, which then undergoes the ground-state reverse proton recombination to the original o-HBDI in ∼50 µs, achieving an overall, reversible proton transfer cycle. This assignment is unambiguously supported by pump-probe laser induced fluorescence studies. On these standpoints, a comparison of photophysical properties among o-HBDI, p-HBDI, and wild-type GFP is discussed in detail.


Subject(s)
Biomimetic Materials/chemistry , Green Fluorescent Proteins/chemistry , Imidazoles/chemistry , Protons , Hydrogen Bonding , Kinetics , Spectrometry, Fluorescence , Spectrophotometry
2.
Chemistry ; 17(2): 546-56, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21207572

ABSTRACT

A series of new mesomorphic platinum(II) complexes 1-4 bearing pyridyl pyrazolate chelates are reported herein. In this approach, pyridyl azolate ligands have been strategically functionalized with tris(alkoxy)phenyl groups with various alkyl chain lengths. As a result, they are ascribed to a class of luminescent metallomesogens that possess distinctive morphological properties, such as their intermolecular packing arrangement and their associated photophysical behavior. In CH(2) Cl(2), independent of the applied concentration in the range 10(-6)-10(-3) M, all Pt(II) complexes exhibit bright phosphorescence centered at around 520 nm, which is characteristic for monomeric Pt(II) complexes. In stark contrast, the single-crystal X-ray structure determination of [Pt(C4pz)(2)] (1) shows the formation of a dimeric aggregate with a notable Pt⋅⋅⋅Pt contact of 3.258 Å. Upon heating, all Pt(II) complexes 1-4 melted to form columnar suprastructures, for which similar intracolumnar Pt⋅⋅⋅Pt distances of approx. 3.4-3.5 Šare observed within an exceptionally wide temperature range (>250 °C), according to the powder XRD data. Upon casting into a neat thin film at RT, the luminescence of 1-4 is dominated by a red emission that spans 630-660 nm, which originates from the one-dimensional, chainlike structure with Pt-Pt interaction in the ground state. Taking complex 4 as a representative, the emission intensity and wavelength were significantly decreased and blueshifted, respectively, on heating from RT to 250 °C. Further heating to liquefy the sample alters the red emission back to the green phosphorescence of the monomer. The results highlight the pivotal role of tris(alkoxy)phenyl groups in the structural versus luminescence behavior of these Pt(II) complexes.

3.
J Org Chem ; 76(20): 8189-202, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21942211

ABSTRACT

o-Hydroxy analogues, 1a-g, of the green fluorescent protein chromophore have been synthesized. Their structures and electronic properties were investigated by X-ray single-crystal analyses, electrochemistry, and luminescence properties. In solid and nonpolar solvents 1a-g exist mainly as Z conformers that possess a seven-membered-ring hydrogen bond and undergo excited-state intramolecular proton transfer (ESIPT) reactions, resulting in a proton-transfer tautomer emission. Fluorescence upconversion dynamics have revealed a coherent type of ESIPT, followed by a fast vibrational/solvent relaxation (<1 ps) to a twisted (regarding exo-C(5)-C(4)-C(3) bonds) conformation, from which a fast population decay of a few to several tens of picoseconds was resolved in cyclohexane. Accordingly, the proton-transfer tautomer emission intensity is moderate (0.08 in 1e) to weak (∼10(-4) in 1a) in cyclohexane. The stronger intramolecular hydrogen bonding in 1g suppresses the rotation of the aryl-alkene bond, resulting in a high yield of tautomer emission (Φ(f) ≈ 0.2). In the solid state, due to the inhibition of exo-C(5)-C(4)-C(3) rotation, intense tautomer emission with a quantum yield of 0.1-0.9 was obtained for 1a-g. Depending on the electronic donor or acceptor strength of the substituent in either the HOMO or LUMO site, a broad tuning range of the emission from 560 (1g) to 670 nm (1a) has been achieved.


Subject(s)
Fluorescent Dyes/chemical synthesis , Green Fluorescent Proteins/chemical synthesis , Molecular Imaging/methods , Crystallography, X-Ray , Electrochemistry , Fluorescent Dyes/analysis , Green Fluorescent Proteins/analysis , Hydrogen Bonding , Hydroxylation , Ions , Luminescence , Models, Chemical , Molecular Conformation , Protons , Solvents/chemistry , Spectrometry, Fluorescence
4.
Chem Commun (Camb) ; (11): 1299-301, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-18389113

ABSTRACT

Two supramolecular isomers of [Ni(4-bpd)(2)(NCS)(2)] (4-bpd = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene) with 2D 4(4) square-grid and 3D 6(5).8 frameworks are co-crystallized in a one-pot reaction, both of which exhibit interesting luminescence properties and reversible adsorption-desorption with respect to guest solvents.

6.
Appl Spectrosc ; 70(7): 1195-201, 2016 07.
Article in English | MEDLINE | ID: mdl-27231333

ABSTRACT

In this paper, two pyridinium styryl dyes, [2-(4-dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (DASPMI), were synthesized and characterized by steady state fluorescence spectroscopy as well as picosecond and femtosecond time-resolved fluorescence spectroscopies. Both dyes exhibit large Stokes shifts and fluorescence decays equivalent to the instrument response function (IRF) standards employed in time-correlated single-photon counting. Due to their styryl and pyridinium moieties, DASPMIs have higher peak fluorescence intensity and shorter excited-state lifetimes than iodide ion-quenched fluorophores. The fluorescence lifetimes of o-DASPMI and p-DASPMI were measured to be 6.6 ps and 12.4 ps, respectively. The fluorescence transients of these DASPMIs were used as the IRFs for iterative reconvolution fitting of the time-resolved fluorescence decay profiles of Rhodamine B (RhB), sulforhodamine B (SRB), and the SRB-SRB2m RNA aptamer complex. The quality of the fits employing the DASPMI-derived IRFs are consistently equivalent to those employing IRFs obtained from light scattering. These results indicate that DASPMI-derived IRFs may be suited for a broad range of applications in time-resolved spectroscopy and fluorescence lifetime imaging microscopy (FLIM), especially in the visible emission range.

7.
Chem Commun (Camb) ; 47(19): 5533-5, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21472191

ABSTRACT

The unprecedented, purely gold(I) alkynyl-diphosphine clusters 1-3 demonstrate intense room-temperature phosphorescence with maximum quantum efficiency of 92% in solution (3) and 86% in solid (2) and thermally dependent emission in the crystalline form, attributed to the crystal lattice arrangement.

SELECTION OF CITATIONS
SEARCH DETAIL