Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Genes Dev ; 32(15-16): 1045-1059, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30012555

ABSTRACT

Ubiquitous deficiency in the survival motor neuron (SMN) protein causes death of motor neurons-a hallmark of the neurodegenerative disease spinal muscular atrophy (SMA)-through poorly understood mechanisms. Here, we show that the function of SMN in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) regulates alternative splicing of Mdm2 and Mdm4, two nonredundant repressors of p53. Decreased inclusion of critical Mdm2 and Mdm4 exons is most prominent in SMA motor neurons and correlates with both snRNP reduction and p53 activation in vivo. Importantly, increased skipping of Mdm2 and Mdm4 exons regulated by SMN is necessary and sufficient to synergistically elicit robust p53 activation in wild-type mice. Conversely, restoration of full-length Mdm2 and Mdm4 suppresses p53 induction and motor neuron degeneration in SMA mice. These findings reveal that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration.


Subject(s)
Alternative Splicing , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins/genetics , Animals , Cell Death , Exons , Mice , Motor Neurons/pathology , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/physiopathology , NIH 3T3 Cells , Nerve Degeneration/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Ribonucleoproteins, Small Nuclear/biosynthesis , Tumor Suppressor Protein p53/metabolism
2.
J Neurosci ; 40(47): 9137-9147, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33051352

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease characterized by motor neuron (MN) death. Lipid dysregulation manifests during disease; however, it is unclear whether lipid homeostasis is adversely affected in the in the spinal cord gray matter (GM), and if so, whether it is because of an aberrant increase in lipid synthesis. Moreover, it is unknown whether lipid dysregulation contributes to MN death. Here, we show that cholesterol ester (CE) and triacylglycerol levels are elevated several-fold in the spinal cord GM of male sporadic ALS patients. Interestingly, HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, was reduced in the spinal cord GM of ALS patients. Increased cytosolic phospholipase A2 activity and lyso-phosphatidylcholine (Lyso-PC) levels in ALS patients suggest that CE accumulation was driven by acyl group transfer from PC to cholesterol. Notably, Lyso-PC, a byproduct of CE synthesis, was toxic to human MNs in vitro Elevations in CE, triacylglycerol, and Lyso-PC were also found in the spinal cord of SOD1G93A mice, a model of ALS. Similar to ALS patients, a compensatory downregulation of cholesterol synthesis occurred in the spinal cord of SOD1G93A mice; levels of sterol regulatory element binding protein 2, a transcriptional regulator of cholesterol synthesis, progressively declined. Remarkably, overexpressing sterol regulatory element binding protein 2 in the spinal cord of normal mice to model CE accumulation led to ALS-like lipid pathology, MN death, astrogliosis, paralysis, and reduced survival. Thus, spinal cord lipid dysregulation in ALS likely contributes to neurodegeneration and developing therapies to restore lipid homeostasis may lead to a treatment for ALS.SIGNIFICANCE STATEMENT Neurons that control muscular function progressively degenerate in patients with amyotrophic lateral sclerosis (ALS). Lipid dysregulation is a feature of ALS; however, it is unclear whether disrupted lipid homeostasis (i.e., lipid cacostasis) occurs proximal to degenerating neurons in the spinal cord, what causes it, and whether it contributes to neurodegeneration. Here we show that lipid cacostasis occurs in the spinal cord gray matter of ALS patients. Lipid accumulation was not associated with an aberrant increase in synthesis or reduced hydrolysis, as enzymatic and transcriptional regulators of lipid synthesis were downregulated during disease. Last, we demonstrated that genetic induction of lipid cacostasis in the CNS of normal mice was associated with ALS-like lipid pathology, astrogliosis, neurodegeneration, and clinical features of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Lipid Metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cell Death , Cholesterol Esters/metabolism , Gray Matter/metabolism , Humans , Lysophosphatidylcholines/metabolism , Male , Mice , Mice, Transgenic , Motor Neurons/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, Phospholipase A2/metabolism , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Triglycerides/metabolism
3.
Proc Natl Acad Sci U S A ; 114(10): 2699-2704, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223512

ABSTRACT

Mutations in the glucocerebrosidase gene (GBA) confer a heightened risk of developing Parkinson's disease (PD) and other synucleinopathies, resulting in a lower age of onset and exacerbating disease progression. However, the precise mechanisms by which mutations in GBA increase PD risk and accelerate its progression remain unclear. Here, we investigated the merits of glucosylceramide synthase (GCS) inhibition as a potential treatment for synucleinopathies. Two murine models of synucleinopathy (a Gaucher-related synucleinopathy model, GbaD409V/D409V and a A53T-α-synuclein overexpressing model harboring wild-type alleles of GBA, A53T-SNCA mouse model) were exposed to a brain-penetrant GCS inhibitor, GZ667161. Treatment of GbaD409V/D409V mice with the GCS inhibitor reduced levels of glucosylceramide and glucosylsphingosine in the central nervous system (CNS), demonstrating target engagement. Remarkably, treatment with GZ667161 slowed the accumulation of hippocampal aggregates of α-synuclein, ubiquitin, and tau, and improved the associated memory deficits. Similarly, prolonged treatment of A53T-SNCA mice with GZ667161 reduced membrane-associated α-synuclein in the CNS and ameliorated cognitive deficits. The data support the contention that prolonged antagonism of GCS in the CNS can affect α-synuclein processing and improve behavioral outcomes. Hence, inhibition of GCS represents a disease-modifying therapeutic strategy for GBA-related synucleinopathies and conceivably for certain forms of sporadic disease.


Subject(s)
Carbamates/pharmacology , Enzyme Inhibitors/administration & dosage , Glucosyltransferases/antagonists & inhibitors , Parkinson Disease/drug therapy , Quinuclidines/pharmacology , alpha-Synuclein/genetics , Animals , Disease Models, Animal , Gene Expression Regulation , Glucosyltransferases/genetics , Humans , Mice , Mutation , Parkinson Disease/enzymology , Parkinson Disease/pathology , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Ubiquitin/metabolism , tau Proteins/metabolism
4.
J Neurosci ; 38(44): 9375-9382, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30381429

ABSTRACT

The greatest unmet therapeutic need in Parkinson's disease (PD) is a treatment that slows the relentless progression of the symptoms and the neurodegenerative process. This review highlights the utility of genetics to understand the pathogenic mechanisms and develop novel therapeutic approaches for PD. The focus is on strategies provided by genetic studies: notably via the reduction and clearance of α-synuclein, inhibition of LRRK2 kinase activity, and modulation of glucocerebrosidase-related substrates. In addition, the critical role of precompetitive public-private partnerships in supporting trial design optimization, overall drug development, and regulatory approvals is illustrated. With these great advances, the promise of developing transformative therapies that halt or slow disease progression is a tangible goal.


Subject(s)
Antiparkinson Agents/administration & dosage , Drug Delivery Systems/trends , Mutation/physiology , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Animals , Clinical Trials as Topic/methods , Drug Delivery Systems/methods , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation/drug effects , Parkinson Disease/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
5.
Neurobiol Dis ; 129: 29-37, 2019 09.
Article in English | MEDLINE | ID: mdl-31042572

ABSTRACT

Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disease caused by a CAG expansion, which translates into an elongated polyglutamine (polyQ) repeat near the amino-terminus of the huntingtin protein (HTT). This results in production of a toxic mutant huntingtin protein (mHTT) that leads to neuronal dysfunction and death. Currently, no disease-modifying treatments are available; however, numerous therapeutic strategies aimed at lowering HTT levels in the brain are under development. To date, studies have not closely examined the contribution of mHTT in neurons vs astrocytes to disease pathophysiology. To better understand the role of astrocytes in HD pathophysiology and the need for cell type specific targeting of HTT lowering therapeutic strategies, AAV capsids were employed that selectively transduce neurons, or both neurons and astrocytes. These vectors carrying miRNA sequences directed against HTT were injected into the YAC128 mouse model of HD to selectively lower HTT expression in neurons alone versus neurons and astrocytes. The results suggested that HTT lowering in neurons alone was not sufficient to rescue the motor phenotype in YAC128 mice. Furthermore, HTT lowering in both cell types was required to achieve maximal functional benefit. The study suggested that astrocyte dysfunction may play a critical role in HD pathogenesis, and thus astrocytes represent an important therapeutic target.


Subject(s)
Astrocytes/metabolism , Huntingtin Protein/antagonists & inhibitors , Huntington Disease/metabolism , Animals , Astrocytes/pathology , Brain/metabolism , Brain/pathology , Dependovirus , Disease Models, Animal , Genetic Vectors , Huntingtin Protein/genetics , Huntington Disease/pathology , Mice , Mice, Transgenic , MicroRNAs , Neurons/metabolism , Neurons/pathology , Phenotype , Transduction, Genetic
6.
Neurobiol Dis ; 130: 104513, 2019 10.
Article in English | MEDLINE | ID: mdl-31233883

ABSTRACT

Pathological mutations in GBA, encoding lysosomal glucocerebrosidase (GCase), cause Gaucher disease (GD). GD is a multi-system disease with great phenotypic variation between individuals. It has been classified into type 1 with primarily peripheral involvement and types 2 and 3 with varying degrees of neurological involvement. GD is characterized by decreased GCase activity and subsequent accumulation of its lipid substrates, glucosylceramide and glucosylsphingosine. Current murine models of neuronopathic GD mostly replicate the severe aspects of the neurological symptoms developing rapid progression and early lethality, thus presenting a short window for therapeutic testing. In order to develop a model of chronic neuronopathic GD, we reduced GCase in the central nervous system (CNS) of a mild GD mouse model (GbaD409V/D409V) via intracerebroventricular administration of an adeno-associated virus encoding a microRNA to Gba (AAV-GFP-miR-Gba). GbaD409V/D409V mice have significantly reduced GCase activity and increased substrate accumulation in the CNS. Phenotypically, these mice partially recapitulate features of mild type 1 GD. Their neurological examination reveals cognitive impairment with normal motor features. Administration of AAV-GFP-miR-Gba into GbaD409V/D409V pups in the CNS caused progressive lipid substrate accumulation. Phenotypically, AAV1-GFP-miR-Gba-treated mice were indistinguishable from their littermates until 10 weeks of age, when they started developing progressive neurological impairments, including hyperactivity, abnormal gait, and head retroflexion. Importantly, these impairments can be prevented by simultaneous administration of a miR-resistant GBA, demonstrating that the pathological effects are specifically due to Gba mRNA reduction. This novel model of neuronopathic GD offers several advantages over current models including slower progression of neurological complications and an increased lifespan, which make it more amenable for therapeutic testing.


Subject(s)
Brain/metabolism , Gaucher Disease/genetics , Glucosylceramidase/genetics , MicroRNAs/genetics , Motor Activity/physiology , Spinal Cord/metabolism , Animals , Dependovirus , Disease Models, Animal , Fibroblasts/metabolism , Gait/physiology , Gaucher Disease/metabolism , Genetic Vectors , Glucosylceramidase/metabolism , Mice , MicroRNAs/metabolism , NIH 3T3 Cells
7.
Mol Ther ; 26(10): 2418-2430, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30057240

ABSTRACT

The present study was designed to characterize transduction of non-human primate brain and spinal cord with a modified adeno-associated virus serotype 2, incapable of binding to the heparan sulfate proteoglycan receptor, referred to as AAV2-HBKO. AAV2-HBKO was infused into the thalamus, intracerebroventricularly or via a combination of both intracerebroventricular and thalamic delivery. Thalamic injection of this modified vector encoding GFP resulted in widespread CNS transduction that included neurons in deep cortical layers, deep cerebellar nuclei, several subcortical regions, and motor neuron transduction in the spinal cord indicative of robust bidirectional axonal transport. Intracerebroventricular delivery similarly resulted in widespread cortical transduction, with one striking distinction that oligodendrocytes within superficial layers of the cortex were the primary cell type transduced. Robust motor neuron transduction was also observed in all levels of the spinal cord. The combination of thalamic and intracerebroventricular delivery resulted in transduction of oligodendrocytes in superficial cortical layers and neurons in deeper cortical layers. Several subcortical regions were also transduced. Our data demonstrate that AAV2-HBKO is a powerful vector for the potential treatment of a wide number of neurological disorders, and highlight that delivery route can significantly impact cellular tropism and pattern of CNS transduction.


Subject(s)
Genetic Therapy , Genetic Vectors/adverse effects , Neurons/drug effects , Parvovirinae/genetics , Spinal Cord/drug effects , Animals , Axonal Transport/drug effects , Brain/drug effects , Brain/pathology , Capsid Proteins/administration & dosage , Capsid Proteins/genetics , Central Nervous System/drug effects , Central Nervous System/pathology , Dependovirus , Disease Models, Animal , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Heparan Sulfate Proteoglycans/administration & dosage , Heparan Sulfate Proteoglycans/genetics , Humans , Infusions, Intraventricular , Motor Neurons/drug effects , Neurons/pathology , Primates , Spinal Cord/pathology , Thalamus/drug effects
8.
Gene Ther ; 25(3): 205-219, 2018 06.
Article in English | MEDLINE | ID: mdl-29785047

ABSTRACT

The successful application of adeno-associated virus (AAV) gene delivery vectors as a therapeutic paradigm will require efficient gene delivery to the appropriate cells in affected organs. In this study, we utilized a rational design approach to introduce modifications to the AAV2 and AAVrh8R capsids and the resulting variants were evaluated for transduction activity in the retina and brain. The modifications disrupted either capsid/receptor binding or altered capsid surface charge. Specifically, we mutated AAV2 amino acids R585A and R588A, which are required for binding to its receptor, heparan sulfate proteoglycans, to generate a variant referred to as AAV2-HBKO. In contrast to parental AAV2, the AAV2-HBKO vector displayed low-transduction activity following intravitreal delivery to the mouse eye; however, following its subretinal delivery, AAV2-HBKO resulted in significantly greater photoreceptor transduction. Intrastriatal delivery of AAV2-HBKO to mice facilitated widespread striatal and cortical expression, in contrast to the restricted transduction pattern of the parental AAV2 vector. Furthermore, we found that altering the surface charge on the AAVrh8R capsid by modifying the number of arginine residues on the capsid surface had a profound impact on subretinal transduction. The data further validate the potential of capsid engineering to improve AAV gene therapy vectors for clinical applications.


Subject(s)
Genetic Therapy/methods , Parvovirinae/growth & development , Parvovirinae/immunology , Animals , Brain/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Dependovirus/immunology , Gene Transfer Techniques , Genetic Vectors , HeLa Cells , Heparitin Sulfate , Humans , Mice , Mice, Inbred C57BL , Photoreceptor Cells/metabolism , Retina/metabolism , Transduction, Genetic/methods
9.
Hum Mol Genet ; 25(13): 2645-2660, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27126635

ABSTRACT

Mutations in GBA1, the gene encoding glucocerebrosidase, are associated with an enhanced risk of developing synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies. A higher prevalence and increased severity of motor and non-motor symptoms is observed in PD patients harboring mutant GBA1 alleles, suggesting a link between the gene or gene product and disease development. Interestingly, PD patients without mutations in GBA1 also exhibit lower levels of glucocerebrosidase activity in the central nervous system (CNS), implicating this lysosomal enzyme in disease pathogenesis. Here, we investigated whether modulation of glucocerebrosidase activity in murine models of synucleinopathy (expressing wild type Gba1) affected α-synuclein accumulation and behavioral phenotypes. Partial inhibition of glucocerebrosidase activity in PrP-A53T-SNCA mice using the covalent inhibitor conduritol-B-epoxide induced a profound increase in soluble α-synuclein in the CNS and exacerbated cognitive and motor deficits. Conversely, augmenting glucocerebrosidase activity in the Thy1-SNCA mouse model of PD delayed the progression of synucleinopathy. Adeno-associated virus-mediated expression of glucocerebrosidase in the Thy1-SNCA mouse striatum led to decrease in the levels of the proteinase K-resistant fraction of α-synuclein, amelioration of behavioral aberrations and protection from loss of striatal dopaminergic markers. These data indicate that increasing glucocerebrosidase activity can influence α-synuclein homeostasis, thereby reducing the progression of synucleinopathies. This study provides robust in vivo evidence that augmentation of CNS glucocerebrosidase activity is a potential therapeutic strategy for PD, regardless of the mutation status of GBA1.


Subject(s)
Glucosylceramidase/metabolism , Glucosylceramidase/physiology , Animals , Cognition/drug effects , Disease Models, Animal , Dopamine , Gaucher Disease/genetics , Gene Expression , Glucosylceramidase/genetics , Glucosylceramidase/therapeutic use , Humans , Mice , Motor Activity/drug effects , Mutation , Parkinson Disease/drug therapy , Parkinson Disease/genetics , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/metabolism
10.
Proc Natl Acad Sci U S A ; 112(26): 8100-5, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26056266

ABSTRACT

Recent genetic evidence suggests that aberrant glycosphingolipid metabolism plays an important role in several neuromuscular diseases including hereditary spastic paraplegia, hereditary sensory neuropathy type 1, and non-5q spinal muscular atrophy. Here, we investigated whether altered glycosphingolipid metabolism is a modulator of disease course in amyotrophic lateral sclerosis (ALS). Levels of ceramide, glucosylceramide, galactocerebroside, lactosylceramide, globotriaosylceramide, and the gangliosides GM3 and GM1 were significantly elevated in spinal cords of ALS patients. Moreover, enzyme activities (glucocerebrosidase-1, glucocerebrosidase-2, hexosaminidase, galactosylceramidase, α-galactosidase, and ß-galactosidase) mediating glycosphingolipid hydrolysis were also elevated up to threefold. Increased ceramide, glucosylceramide, GM3, and hexosaminidase activity were also found in SOD1(G93A) mice, a familial model of ALS. Inhibition of glucosylceramide synthesis accelerated disease course in SOD1(G93A) mice, whereas infusion of exogenous GM3 significantly slowed the onset of paralysis and increased survival. Our results suggest that glycosphingolipids are likely important participants in pathogenesis of ALS and merit further analysis as potential drug targets.


Subject(s)
Amyotrophic Lateral Sclerosis/physiopathology , Glycosphingolipids/physiology , Amyotrophic Lateral Sclerosis/enzymology , Animals , Disease Models, Animal , Disease Progression , G(M3) Ganglioside/administration & dosage , Glucosyltransferases/antagonists & inhibitors , Humans , Injections, Intraventricular , Male , Mice , Mice, Transgenic , Spinal Cord/physiopathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
11.
Proc Natl Acad Sci U S A ; 110(9): 3537-42, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23297226

ABSTRACT

Mutations of GBA1, the gene encoding glucocerebrosidase, represent a common genetic risk factor for developing the synucleinopathies Parkinson disease (PD) and dementia with Lewy bodies. PD patients with or without GBA1 mutations also exhibit lower enzymatic levels of glucocerebrosidase in the central nervous system (CNS), suggesting a possible link between the enzyme and the development of the disease. Previously, we have shown that early treatment with glucocerebrosidase can modulate α-synuclein aggregation in a presymptomatic mouse model of Gaucher-related synucleinopathy (Gba1(D409V/D409V)) and ameliorate the associated cognitive deficit. To probe this link further, we have now evaluated the efficacy of augmenting glucocerebrosidase activity in the CNS of symptomatic Gba1(D409V/D409V) mice and in a transgenic mouse model overexpressing A53T α-synuclein. Adeno-associated virus-mediated expression of glucocerebrosidase in the CNS of symptomatic Gba1(D409V/D409V) mice completely corrected the aberrant accumulation of the toxic lipid glucosylsphingosine and reduced the levels of ubiquitin, tau, and proteinase K-resistant α-synuclein aggregates. Importantly, hippocampal expression of glucocerebrosidase in Gba1(D409V/D409V) mice (starting at 4 or 12 mo of age) also reversed their cognitive impairment when examined using a novel object recognition test. Correspondingly, overexpression of glucocerebrosidase in the CNS of A53T α-synuclein mice reduced the levels of soluble α-synuclein, suggesting that increasing the glycosidase activity can modulate α-synuclein processing and may modulate the progression of α-synucleinopathies. Hence, increasing glucocerebrosidase activity in the CNS represents a potential therapeutic strategy for GBA1-related and non-GBA1-associated synucleinopathies, including PD.


Subject(s)
Brain/enzymology , Gaucher Disease/drug therapy , Gaucher Disease/enzymology , Glucosylceramidase/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/enzymology , alpha-Synuclein/metabolism , Animals , Brain/pathology , Brain/physiopathology , Dependovirus/metabolism , Disease Models, Animal , Gaucher Disease/pathology , Gaucher Disease/physiopathology , Glucosylceramidase/administration & dosage , Glucosylceramidase/genetics , Glucosylceramidase/therapeutic use , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/physiopathology , Humans , Memory , Mice , Mice, Transgenic , Parkinsonian Disorders/physiopathology , Protein Structure, Quaternary , Psychosine/analogs & derivatives , Psychosine/metabolism , alpha-Synuclein/genetics , tau Proteins/chemistry , tau Proteins/metabolism
12.
Proc Natl Acad Sci U S A ; 110(26): 10812-7, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754387

ABSTRACT

Metabolic dysfunction is an important modulator of disease course in amyotrophic lateral sclerosis (ALS). We report here that a familial mouse model (transgenic mice over-expressing the G93A mutation of the Cu/Zn superoxide dismutase 1 gene) of ALS enters a progressive state of acidosis that is associated with several metabolic (hormonal) alternations that favor lipolysis. Extensive investigation of the major determinants of H(+) concentration (i.e., the strong ion difference and the strong ion gap) suggests that acidosis is also due in part to the presence of an unknown anion. Consistent with a compensatory response to avert pathological acidosis, ALS mice harbor increased accumulation of glycogen in CNS and visceral tissues. The altered glycogen is associated with fluctuations in lysosomal and neutral α-glucosidase activities. Disease-related changes in glycogen, glucose, and α-glucosidase activity are also found in spinal cord tissue samples of autopsied patients with ALS. Collectively, these data provide insights into the pathogenesis of ALS as well as potential targets for drug development.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Acidosis/etiology , Acidosis/genetics , Acidosis/metabolism , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/genetics , Animals , Disease Models, Animal , Disease Progression , Glycogen/metabolism , Humans , Mice , Mice, Transgenic , Mutation , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
13.
Neurobiol Dis ; 76: 24-36, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25583186

ABSTRACT

Huntington Disease (HD) is a progressive neurodegenerative disease caused by an elongated CAG repeat in the huntingtin (HTT) gene that encodes a polyglutamine tract in the HTT protein. Proteolysis of the mutant HTT protein (mHTT) has been detected in human and murine HD brains and is implicated in the pathogenesis of HD. Of particular importance is the site at amino acid (aa) 586 that contains a caspase-6 (Casp6) recognition motif. Activation of Casp6 occurs presymptomatically in human HD patients and the inhibition of mHTT proteolysis at aa586 in the YAC128 mouse model results in the full rescue of HD-like phenotypes. Surprisingly, Casp6 ablation in two different HD mouse models did not completely prevent the generation of this fragment, and therapeutic benefits were limited, questioning the role of Casp6 in the disease. We have evaluated the impact of the loss of Casp6 in the YAC128 mouse model of HD. Levels of the mHTT-586 fragment are reduced but not absent in the absence of Casp6 and we identify caspase 8 as an alternate enzyme that can generate this fragment. In vivo, the ablation of Casp6 results in a partial rescue of body weight gain, normalized IGF-1 levels, a reversal of the depression-like phenotype and decreased HTT levels. In the YAC128/Casp6-/- striatum there is a concomitant reduction in p62 levels, a marker of autophagic activity, suggesting increased autophagic clearance. These results implicate the HTT-586 fragment as a key contributor to certain features of HD, irrespective of the enzyme involved in its generation.


Subject(s)
Caspase 6/metabolism , Huntington Disease/enzymology , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Body Weight , Brain-Derived Neurotrophic Factor/metabolism , Caspase 6/genetics , Corpus Striatum/metabolism , Depression/metabolism , Disease Models, Animal , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Transgenic , Motor Activity
14.
Mov Disord ; 30(8): 1085-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26096906

ABSTRACT

BACKGROUND: To establish whether Parkinson's disease (PD) brains previously described to have decreased glucocerebrosidase activity exhibit accumulation of the lysosomal enzyme's substrate, glucosylceramide, or other changes in lipid composition. METHODS: Lipidomic analyses and cholesterol measurements were performed on the putamen (n = 5-7) and cerebellum (n = 7-14) of controls, Parkinson's disease brains with heterozygote GBA1 mutations (PD+GBA), or sporadic PD. RESULTS: Total glucosylceramide levels were unchanged in both PD+GBA and sporadic PD brains when compared with controls. No changes in glucosylsphingosine (deacetylated glucosylceramide), sphingomyelin, gangliosides (GM2, GM3), or total cholesterol were observed in either putamen or cerebellum. CONCLUSIONS: This study did not demonstrate glucocerebrosidase substrate accumulation in PD brains with heterozygote GBA1 mutations in areas of the brain with low α-synuclein pathology.


Subject(s)
Cerebellum/metabolism , Glucosylceramidase/metabolism , Putamen/metabolism , Tissue Banks , beta-Glucosidase/genetics , Cerebellum/pathology , Humans , Mutation , Putamen/pathology
15.
Hum Mol Genet ; 21(10): 2219-32, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22328089

ABSTRACT

The development of animal models of Huntington disease (HD) has enabled studies that help define the molecular aberrations underlying the disease. The BACHD and YAC128 transgenic mouse models of HD harbor a full-length mutant huntingtin (mHTT) and recapitulate many of the behavioural and neuropathological features of the human condition. Here, we demonstrate that while BACHD and YAC128 animals exhibit similar deficits in motor learning and coordination, depressive-like symptoms, striatal volume loss and forebrain weight loss, they show obvious differences in key features characteristic of HD. While YAC128 mice exhibit significant and widespread accumulation of mHTT striatal aggregates, these mHTT aggregates are absent in BACHD mice. Furthermore, the levels of several striatally enriched mRNA for genes, such as DARPP-32, enkephalin, dopamine receptors D1 and D2 and cannabinoid receptor 1, are significantly decreased in YAC128 but not BACHD mice. These findings may reflect sequence differences in the human mHTT transgenes harboured by the BACHD and YAC128 mice, including both single nucleotide polymorphisms as well as differences in the nature of CAA interruptions of the CAG tract. Our findings highlight a similar profile of HD-like behavioural and neuropathological deficits and illuminate differences that inform the use of distinct endpoints in trials of therapeutic agents in the YAC128 and BACHD mice.


Subject(s)
Huntington Disease/genetics , Nerve Tissue Proteins/genetics , Neurons/metabolism , Animals , Disease Models, Animal , Female , Huntingtin Protein , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Neurons/pathology , Transgenes
16.
Proc Natl Acad Sci U S A ; 108(29): 12101-6, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21730160

ABSTRACT

Emerging genetic and clinical evidence suggests a link between Gaucher disease and the synucleinopathies Parkinson disease and dementia with Lewy bodies. Here, we provide evidence that a mouse model of Gaucher disease (Gba1(D409V/D409V)) exhibits characteristics of synucleinopathies, including progressive accumulation of proteinase K-resistant α-synuclein/ubiquitin aggregates in hippocampal neurons and a coincident memory deficit. Analysis of homozygous (Gba1(D409V/D409V)) and heterozygous (Gba1(D409V/+) and Gba1(+/-)) Gaucher mice indicated that these pathologies are a result of the combination of a loss of glucocerebrosidase activity and a toxic gain-of-function resulting from expression of the mutant enzyme. Importantly, adeno-associated virus-mediated expression of exogenous glucocerebrosidase injected into the hippocampus of Gba1(D409V/D409V) mice ameliorated both the histopathological and memory aberrations. The data support the contention that mutations in GBA1 can cause Parkinson disease-like α-synuclein pathology, and that rescuing brain glucocerebrosidase activity might represent a therapeutic strategy for GBA1-associated synucleinopathies.


Subject(s)
Gaucher Disease/pathology , Glucosylceramidase/metabolism , Hippocampus/enzymology , alpha-Synuclein/metabolism , Analysis of Variance , Animals , Blotting, Western , Dependovirus , Endopeptidase K/metabolism , Gaucher Disease/metabolism , Gene Transfer Techniques , Genetic Vectors/genetics , Glucosylceramidase/genetics , Hippocampus/cytology , Immunohistochemistry , Mice
17.
Mol Ther ; 20(9): 1713-23, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22735381

ABSTRACT

Central nervous system (CNS)-directed gene therapy with recombinant adeno-associated virus (AAV) vectors has been used effectively to slow disease course in mouse models of several neurodegenerative diseases. However, these vectors were typically tested in mice without prior exposure to the virus, an immunological scenario unlikely to be duplicated in human patients. Here, we examined the impact of pre-existing immunity on AAV-mediated gene delivery to the CNS of normal and diseased mice. Antibody levels in brain tissue were determined to be 0.6% of the levels found in systemic circulation. As expected, transgene expression in brains of mice with relatively high serum antibody titers was reduced by 59-95%. However, transduction activity was unaffected in mice that harbored more clinically relevant antibody levels. Moreover, we also showed that markers of neuroinflammation (GFAP, Iba1, and CD3) and histopathology (hematoxylin and eosin (H&E)) were not enhanced in immune-primed mice (regardless of pre-existing antibody levels). Importantly, we also demonstrated in a mouse model of Niemann Pick Type A (NPA) disease that pre-existing immunity did not preclude either gene transfer to the CNS or alleviation of disease-associated neuropathology. These findings support the continued development of AAV-based therapies for the treatment of neurological disorders.


Subject(s)
Antibodies, Viral/immunology , Brain/immunology , Dependovirus/genetics , Genetic Therapy/methods , Niemann-Pick Disease, Type A/therapy , Adult , Animals , Antibodies, Viral/metabolism , Biomarkers/metabolism , Brain/metabolism , Dependovirus/immunology , Disease Models, Animal , Gene Transfer Techniques , Genetic Vectors , Humans , Immunization , Mice , Niemann-Pick Disease, Type A/genetics , Niemann-Pick Disease, Type A/immunology , Niemann-Pick Disease, Type A/metabolism , Transgenes
18.
Mol Ther ; 20(10): 1893-901, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22828503

ABSTRACT

Niemann-Pick disease Type A (NPA) is a neuronopathic lysosomal storage disease (LSD) caused by the loss of acid sphingomyelinase (ASM). The goals of the current study are to ascertain the levels of human ASM that are efficacious in ASM knockout (ASMKO) mice, and determine whether these levels can be attained in non-human primates (NHPs) using a multiple parenchymal injection strategy. Intracranial injections of different doses of AAV1-hASM in ASMKO mice demonstrated that only a small amount of enzyme (<0.5 mg hASM/g tissue) was sufficient to increase survival, and that increasing the amount of hASM did not enhance this survival benefit until a new threshold level of >10 mg hASM/g tissue was reached. In monkeys, injection of 12 tracts of AAV1-hASM resulted in efficacious levels of enzyme in broad regions of the brain that was aided, in part, by axonal transport of adeno-associated virus (AAV) and movement through the perivascular space. This study demonstrates that a combination cortical, subcortical, and cerebellar injection protocol could provide therapeutic levels of hASM to regions of the NHP brain that are highly affected in NPA patients. The information from this study might help design new AAV-mediated enzyme replacement protocols for NPA and other neuronopathic LSDs in future clinical trials.


Subject(s)
Genetic Therapy , Niemann-Pick Disease, Type A/therapy , Sphingomyelin Phosphodiesterase/deficiency , Animals , Brain/enzymology , Dependovirus/genetics , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Genetic Vectors/genetics , Injections , Macaca fascicularis , Male , Mice , Mice, Knockout , Niemann-Pick Disease, Type A/pathology , Primates/metabolism , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism
19.
Ann Neurol ; 69(6): 940-53, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21472771

ABSTRACT

OBJECTIVE: Heterozygous mutations in the GBA1 gene elevate the risk of Parkinson disease and dementia with Lewy bodies; both disorders are characterized by misprocessing of α-synuclein (SNCA). A loss in lysosomal acid-ß-glucosidase enzyme (GCase) activity due to biallelic GBA1 mutations underlies Gaucher disease. We explored mechanisms for the gene's association with increased synucleinopathy risk. METHODS: We analyzed the effects of wild-type (WT) and several GBA mutants on SNCA in cellular and in vivo models using biochemical and immunohistochemical protocols. RESULTS: We observed that overexpression of all GBA mutants examined (N370S, L444P, D409H, D409V, E235A, and E340A) significantly raised human SNCA levels to 121 to 248% of vector control (p < 0.029) in neural MES23.5 and PC12 cells, but without altering GCase activity. Overexpression of WT GBA in neural and HEK293-SNCA cells increased GCase activity, as expected (ie, to 167% in MES-SNCA, 128% in PC12-SNCA, and 233% in HEK293-SNCA; p < 0.002), but had mixed effects on SNCA. Nevertheless, in HEK293-SNCA cells high GCase activity was associated with SNCA reduction by ≤32% (p = 0.009). Inhibition of cellular GCase activity (to 8-20% of WT; p < 0.0017) did not detectably alter SNCA levels. Mutant GBA-induced SNCA accumulation could be pharmacologically reversed in D409V-expressing PC12-SNCA cells by rapamycin, an autophagy-inducer (≤40%; 10µM; p < 0.02). Isofagomine, a GBA chaperone, showed a related trend. In mice expressing two D409Vgba knockin alleles without signs of Gaucher disease (residual GCase activity, ≥20%), we recorded an age-dependent rise of endogenous Snca in hippocampal membranes (125% vs WT at 52 weeks; p = 0.019). In young Gaucher disease mice (V394Lgba+/+//prosaposin[ps]-null//ps-transgene), which demonstrate neurological dysfunction after age 10 weeks (GCase activity, ≤10%), we recorded no significant change in endogenous Snca levels at 12 weeks of age. However, enhanced neuronal ubiquitin signals and axonal spheroid formation were already present. The latter changes were similar to those seen in three week-old cathepsin D-deficient mice. INTERPRETATION: Our results demonstrate that GBA mutants promote SNCA accumulation in a dose- and time-dependent manner, thereby identifying a biochemical link between GBA1 mutation carrier status and increased synucleinopathy risk. In cell culture models, this gain of toxic function effect can be mitigated by rapamycin. Loss in GCase activity did not immediately raise SNCA concentrations, but first led to neuronal ubiquitinopathy and axonal spheroids, a phenotype shared with other lysosomal storage disorders.


Subject(s)
Gaucher Disease/genetics , Glucosylceramidase/genetics , Lewy Body Disease/genetics , Mutation/genetics , Parkinson Disease/genetics , alpha-Synuclein/metabolism , Animals , Cathepsin D/deficiency , Cathepsin D/genetics , Cell Line , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay/methods , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Humans , Immunosuppressive Agents/pharmacology , Mice , Mice, Knockout , Mutagenesis, Site-Directed/methods , Rats , Sirolimus/pharmacology , Transfection , alpha-Synuclein/genetics
20.
FASEB J ; 25(12): 4369-77, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21876068

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron cell loss, muscular atrophy, and a shortened life span. Survival is highly variable, as some patients die within months, while others live for many years. Exposure to stress or the development of a nonoptimal stress response to disease might account for some of this variability. We show in the SOD1(G93A) mouse model of ALS that recurrent exposure to restraint stress led to an earlier onset of astrogliosis and microglial activation within the spinal cord, accelerated muscular weakness, and a significant decrease in median survival (105 vs. 122 d) when compared to nonstressed animals. Moreover, during normal disease course, ALS mice display a cacostatic stress response by developing an aberrant serum corticosterone circadian rhythm. Interestingly, we also found that higher corticosterone levels were significantly correlated with both an earlier onset of paralysis (males: r(2)=0.746; females: r(2)=0.707) and shorter survival times (males: r(2)=0.680; females: r(2)=0.552) in ALS mice. These results suggest that stress is capable of accelerating disease progression and that strategies that modulate glucocorticoid metabolism might be a viable treatment approach for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/etiology , Corticosterone/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Corticosterone/blood , Corticosterone/pharmacology , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice , Mice, Mutant Strains , Mice, Transgenic , Models, Biological , Mutant Proteins/genetics , Mutant Proteins/metabolism , Restraint, Physical/adverse effects , Stress, Physiological , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL