Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters

Publication year range
1.
Phys Chem Chem Phys ; 24(35): 20742-20759, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36043512

ABSTRACT

Extended X-ray absorption fine structure (EXAFS) has evolved into an unprecedented local-structure technique that is routinely used to study materials' problems in the biological, chemical, and physical sciences. Like many other experimental techniques, EXAFS also requires that several key atomic parameters must be known a priori before structural information can be quantitatively determined. Utilizing current analytical methods, we revisit the isoelectronic series CuBr, ZnSe, GaAs, and Ge originally studied by Stern et al. during the early development of EXAFS [E. A. Stern et al., Phys. Rev. B: Condens. Matter Mater. Phys., 1980, 21, 5521; B. A. Bunker and E. A. Stern, Phys. Rev. B: Condens. Matter Mater. Phys. 1983, 27, 1017]. We demonstrate that the ab initio EXAFS code FEFF accurately predicts the atomic phase shifts and backscattering amplitudes that are primarily functions of the sum of atomic numbers Z along an EXAFS scattering path. We also investigate quantitative fitting and first- and second-shell phase transferability together with problems that arise if a backscattering atom is identified incorrectly in an EXAFS fitting model. Features in the near-edge region, on the other hand, are shown to require a comprehensive treatment of the band structure and density-of-states, including effects of the screened Coulomb interaction between the photoelectron and core hole. We demonstrate that the Bethe-Salpeter equation (BSE) accurately captures the NEXAFS (or XANES) portion of the spectrum for the isoelectronic series in addition to Si and Ge-Si alloys, including within a few eV of the absorption edge, where band structure and excitonic effects are most important.

2.
Phys Rev B ; 101(24)2020 Jun.
Article in English | MEDLINE | ID: mdl-34409240

ABSTRACT

First-principles, real-time-cumulant, and Bethe-Salpeter-equation calculations fully capture the detailed satellite structure that occurs in response to the sudden creation of the core hole in both photoemission and x-ray absorption spectra of the transition-metal compounds SrTiO3 and rutile TiO2. Analysis of the excited-state, real-space charge-density fluctuations betrays the physical nature of these many electron excitations that are shown to reflect the materials' solid-state electronic structure and chemical bonding. This first-principles development of the cumulant-based core hole spectral function is generally applicable to other systems and should become a standard tool for all similar spectroscopic analysis going beyond the quasiparticle physics of the photoelectric effect.

3.
Phys Rev B ; 101(24)2020 Jun.
Article in English | MEDLINE | ID: mdl-34409241

ABSTRACT

Electron-core hole interactions are critical for proper interpretation of core-level spectroscopies commonly used as analytical tools in materials science. Here we utilize resonant Auger-electron spectroscopy to uniquely identify exciton, shake, and charge-transfer processes that result from the sudden creation of the core hole in both x-ray-absorption and photoemission spectra. These effects are captured for the transition-metal compounds SrTiO3 and MoS2 by fully ab initio, combined real-time cumulant, and Bethe-Salpeter equation approaches to account for core hole dynamics and screening. Atomic charges and excited-state electron-density fluctuations reflect materials' solid-state electronic structure, loss of translational symmetry around the core hole, and breakdown of the sudden approximation. They also demonstrate competition between long- and short-range screening in a solid.

4.
Article in English | MEDLINE | ID: mdl-31080488

ABSTRACT

Conventional Kohn-Sham band-structure methods for calculating deep-core x-ray spectra typically neglect photoelectron self-energy effects, which give rise to an energy-dependent shift and broadening of the spectra. Here an a posteriori procedure is introduced to correct for these effects. The method is based on ab initio calculations of the GW self-energy using a many-pole model and a calculation of the dielectric function in the long wavelength limit using either the FEFF8 real-space Green's function code, or the AI2NBSE interface between the National Institute of Standards and Technology (NIST) Bethe-Salpeter equation solver (NBSE) and the ABINIT pseudopotential code. As an example the method is applied to core level x-ray spectra of LiF and MgAl2O4 calculated using (respectively) OCEAN, an extension of the AI2NBSE code for core level excitations, and the PARATEC pseudopotential code with the core-hole treated using a super-cell. The method satisfactorily explains the discrepancy between experiment and calculations.

5.
J Chem Phys ; 129(4): 044702, 2008 Jul 28.
Article in English | MEDLINE | ID: mdl-18681665

ABSTRACT

New theoretical and experimental investigations of the occupied and unoccupied local electronic densities of states (DOS) are reported for alpha-Li(3)N. Band-structure and density-functional theory calculations confirm the absence of covalent bonding character. However, real-space full-multiple-scattering (RSFMS) calculations of the occupied local DOS find less extreme nominal valences than have previously been proposed. Nonresonant inelastic x-ray scattering, RSFMS calculations, and calculations based on the Bethe-Salpeter equation are used to characterize the unoccupied electronic final states local to both the Li and N sites. There is a good agreement between experiment and theory. Throughout the Li 1s near-edge region, both experiment and theory find strong similarities in the s-and p-type components of the unoccupied local final DOS projected onto an orbital angular momentum basis (l-DOS). An unexpected, significant correspondence exists between the near-edge spectra for the Li 1s and N 1s initial states. We argue that both spectra are sampling essentially the same final DOS due to the combination of long core-hole lifetimes, long photoelectron lifetimes, and the fact that orbital angular momentum is the same for all relevant initial states. Such considerations may be generally applicable for low atomic number compounds.

6.
J Res Natl Inst Stand Technol ; 113(4): 187-203, 2008.
Article in English | MEDLINE | ID: mdl-27096120

ABSTRACT

There is a 5 W/m(2) (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18-20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underfill the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here.

7.
Phys Rev B ; 95(11)2017 Mar.
Article in English | MEDLINE | ID: mdl-28819652

ABSTRACT

We present calculated valence and C 1s near-edge excitation spectra of solid C60 and experimental results measured with high-resolution electron energy-loss spectroscopy. The near-edge calculations are carried out using three different methods: solution of the Bethe-Salpeter equation (BSE) as implemented in the OCEAN suite (Obtaining Core Excitations with ab initio methods and the NIST BSE solver), the excited-electron core-hole approach (XCH), and the constrained-occupancy method using the Stockholm-Berlin core-excitation code, StoBe. The three methods give similar results and are in good agreement with experiment, though the BSE results are the most accurate. The BSE formalism is also used to carry out valence level calculations using the NIST Bethe-Salpeter Equation solver (NBSE). Theoretical results include self-energy corrections to the band gap and band widths, lifetime-damping effects, and Debye-Waller effects in the core-excitation case. A comparison of spectral features to those observed experimentally illustrates the sensitivity of certain features to computational details, such as self-energy corrections to the band structure and core-hole screening.

8.
Phys Rev B ; 95(8)2017 Feb 01.
Article in English | MEDLINE | ID: mdl-38618525

ABSTRACT

Femtosecond x-ray absorption spectroscopy with a laser-driven high-harmonic source is used to map ultrafast changes of x-ray absorption by femtometer-scale coherent phonon displacements. In LiBH4, displacements along an Ag phonon mode at 10 THz are induced by impulsive Raman excitation and give rise to oscillatory changes of x-ray absorption at the Li K-edge. Electron density maps from femtosecond x-ray diffraction data show that the electric field of the pump pulse induces a charge transfer from the BH4- to neighboring Li+ ions, resulting in a differential Coulomb force that drives lattice vibrations in this virtual transition state.

9.
J Res Natl Inst Stand Technol ; 106(5): 775-9, 2001.
Article in English | MEDLINE | ID: mdl-27500046

ABSTRACT

An algorithm for computing diffraction effects on total power in the case of Fraunhofer diffraction by a circular lens or aperture is derived. The result for Fraunhofer diffraction of monochromatic radiation is well known, and this work reports the result for radiation from a Planckian source. The result obtained is valid at all temperatures.

10.
Article in English | MEDLINE | ID: mdl-31080344

ABSTRACT

We present a hybrid approach for Bethe-Salpeter equation (BSE) calculations of core excitation spectra, including x-ray absorption (XAS), electron energy loss spectra (EELS), and nonresonant inelastic x-ray scattering (NRIXS). The method is based on ab initio wave functions from the plane-wave pseudopotential code ABINIT; atomic core-level states and projector augmented wave (PAW) transition matrix elements; the NIST core-level BSE solver; and a many-pole self-energy model to account for final-state broadening and self-energy shifts. Multiplet effects are also approximately accounted for. The approach is implemented using an interface dubbed OCEAN (Obtaining Core Excitations using ABINIT and NBSE). To demonstrate the utility of the code we present results for the K edges in LiF as probed by XAS and NRIXS, the K edges of KCl as probed by XAS, the Ti L2,3 edge in SrTiO3 as probed by XAS, and the Mg L2,3 edge in MgO as probed by XAS. These results are compared with experiment and with other theoretical approaches.

11.
Appl Opt ; 37(28): 6581-90, 1998 Oct 01.
Article in English | MEDLINE | ID: mdl-18301464

ABSTRACT

Revised formulas to estimate diffraction effects in radiometry for point and extended sources are derived. They are found to work as well as or better than previous formulas. In some instances the formulas can be written in closed form; otherwise their evaluation entails performing simple integrations as indicated. Formulas have been found for nonlimiting apertures, large defining apertures, and pinhole apertures. Examples of all three types of application are presented.

12.
Appl Opt ; 40(25): 4463-72, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-18360485

ABSTRACT

Two mathematical innovations are presented that relate to calculating propagation of radiation through cylindrically symmetrical systems using Kirchhoff diffraction theory. The first innovation leads to an efficient means of computing Lommel functions of two arguments (u and nu), typically denoted by U(n)(u, nu) and V(n)(u, nu). This can accelerate computations involving Fresnel diffraction by circular apertures or lenses. The second innovation facilitates calculations of Kirchhoff diffraction integrals without recourse to the Fresnel approximation, yet with greatly improved efficiency like that characteristic of the latter approximation.

SELECTION OF CITATIONS
SEARCH DETAIL