Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Nat Rev Neurosci ; 25(4): 272-284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374463

ABSTRACT

The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-ß in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.


Subject(s)
Alzheimer Disease , Sleep Wake Disorders , Humans , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Sleep/physiology , Sleep Wake Disorders/complications , Brain/metabolism
2.
Proc Natl Acad Sci U S A ; 119(33): e2121040119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35943986

ABSTRACT

Regulation of firing rate homeostasis constitutes a fundamental property of central neural circuits. While intracellular Ca2+ has long been hypothesized to be a feedback control signal, the molecular machinery enabling a network-wide homeostatic response remains largely unknown. We show that deletion of insulin-like growth factor-1 receptor (IGF-1R) limits firing rate homeostasis in response to inactivity, without altering the distribution of baseline firing rates. The deficient firing rate homeostatic response was due to disruption of both postsynaptic and intrinsic plasticity. At the cellular level, we detected a fraction of IGF-1Rs in mitochondria, colocalized with the mitochondrial calcium uniporter complex (MCUc). IGF-1R deletion suppressed transcription of the MCUc members and burst-evoked mitochondrial Ca2+ (mitoCa2+) by weakening mitochondria-to-cytosol Ca2+ coupling. Overexpression of either mitochondria-targeted IGF-1R or MCUc in IGF-1R-deficient neurons was sufficient to rescue the deficits in burst-to-mitoCa2+ coupling and firing rate homeostasis. Our findings indicate that mitochondrial IGF-1R is a key regulator of the integrated homeostatic response by tuning the reliability of burst transfer by MCUc. Based on these results, we propose that MCUc acts as a homeostatic Ca2+ sensor. Faulty activation of MCUc may drive dysregulation of firing rate homeostasis in aging and in brain disorders associated with aberrant IGF-1R/MCUc signaling.


Subject(s)
Calcium Channels , Calcium , Receptor, IGF Type 1 , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Gene Deletion , Homeostasis , Mice , Neuronal Plasticity , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Reproducibility of Results
3.
J Neurosci ; 40(19): 3694-3706, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32277041

ABSTRACT

Persistent alterations in neuronal activity elicit homeostatic plastic changes in synaptic transmission and/or intrinsic excitability. However, it is unknown whether these homeostatic processes operate in concert or at different temporal scales to maintain network activity around a set-point value. Here we show that chronic neuronal hyperactivity, induced by M-channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in cultured hippocampal pyramidal neurons from mice of either sex. Homeostatic changes of intrinsic excitability occurred at a fast timescale (1-4 h) and depended on ongoing spiking activity. This fast intrinsic adaptation included plastic changes in the threshold current and a distal relocation of FGF14, a protein physically bridging Nav1.6 and Kv7.2 channels along the axon initial segment. In contrast, synaptic adaptations occurred at a slower timescale (∼2 d) and involved decreases in miniature EPSC amplitude. To examine how these temporally distinct homeostatic responses influenced hippocampal network activity, we quantified the rate of spontaneous spiking measured by multielectrode arrays at extended timescales. M-Channel blockade triggered slow homeostatic renormalization of the mean firing rate (MFR), concomitantly accompanied by a slow synaptic adaptation. Thus, the fast intrinsic adaptation of excitatory neurons is not sufficient to account for the homeostatic normalization of the MFR. In striking contrast, homeostatic adaptations of intrinsic excitability and spontaneous MFR failed in hippocampal GABAergic inhibitory neurons, which remained hyperexcitable following chronic M-channel blockage. Our results indicate that a single perturbation such as M-channel inhibition triggers multiple homeostatic mechanisms that operate at different timescales to maintain network mean firing rate.SIGNIFICANCE STATEMENT Persistent alterations in synaptic input elicit homeostatic plastic changes in neuronal activity. Here we show that chronic neuronal hyperexcitability, induced by M-type potassium channel inhibition, triggered intrinsic and synaptic homeostatic plasticity at different timescales in hippocampal excitatory neurons. The data indicate that the fast adaptation of intrinsic excitability depends on ongoing spiking activity but is not sufficient to provide homeostasis of the mean firing rate. Our results show that a single perturbation such as M-channel inhibition can trigger multiple homeostatic processes that operate at different timescales to maintain network mean firing rate.


Subject(s)
Hippocampus/physiology , Homeostasis/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , Animals , Female , Male , Mice , Mice, Inbred BALB C , Potassium Channels/metabolism
4.
Hum Mol Genet ; 26(13): 2462-2471, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28402427

ABSTRACT

Cannabis abuse in adolescence is associated with increased risk of psychotic disorders. Δ-9-tetrahydrocannabinol (THC) is the primary psychoactive component of cannabis. Disrupted-In-Schizophrenia-1 (DISC1) protein is a driver for major mental illness by influencing neurodevelopmental processes. Here, utilizing a unique mouse model based on host (DISC1) X environment (THC administration) interaction, we aimed at studying the pathobiological basis through which THC exposure elicits psychiatric manifestations. Wild-Type and dominant-negative-DISC1 (DN-DISC1) mice were injected with THC (10 mg/kg) or vehicle for 10 days during mid-adolescence-equivalent period. Behavioral tests were conducted to assess exploratory activity (open field test, light-dark box test) and cognitive function (novel object recognition test). Electrophysiological effect of THC was evaluated using acute hippocampal slices, and hippocampal cannabinoid receptor type 1 and brain-derived neurotrophic factor (BDNF) protein levels were measured. Our results indicate that THC exposure elicits deficits in exploratory activity and recognition memory, together with reduced short-term synaptic facilitation and loss of BDNF surge in the hippocampus of DN-DISC mice, but not in wild-type mice. Over-expression of BDNF in the hippocampus of THC-treated DN-DISC1 mice prevented the impairment in recognition memory. The results of this study imply that induction of BDNF following adolescence THC exposure may serve as a homeostatic response geared to maintain proper cognitive function against exogenous insult. The BDNF surge in response to THC is perturbed in the presence of mutant DISC1, suggesting DISC1 may be a useful probe to identify biological cascades involved in the neurochemical, electrophysiological, and behavioral effects of cannabis related psychiatric manifestations.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dronabinol/adverse effects , Nerve Tissue Proteins/drug effects , Adolescent , Animals , Animals, Newborn , Cannabis/adverse effects , Cognition/drug effects , Cognition Disorders/metabolism , Disease Models, Animal , Dronabinol/metabolism , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Psychotic Disorders
5.
EMBO J ; 34(22): 2820-39, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26438723

ABSTRACT

Do different neurodegenerative maladies emanate from the failure of a mutual protein folding mechanism? We have addressed this question by comparing mutational patterns that are linked to the manifestation of distinct neurodegenerative disorders and identified similar neurodegeneration-linked proline substitutions in the prion protein and in presenilin 1 that underlie the development of a prion disorder and of familial Alzheimer's disease (fAD), respectively. These substitutions were found to prevent the endoplasmic reticulum (ER)-resident chaperone, cyclophilin B, from assisting presenilin 1 to fold properly, leading to its aggregation, deposition in the ER, reduction of γ-secretase activity, and impaired mitochondrial distribution and function. Similarly, reduced quantities of the processed, active presenilin 1 were observed in brains of cyclophilin B knockout mice. These discoveries imply that reduced cyclophilin activity contributes to the development of distinct neurodegenerative disorders, propose a novel mechanism for the development of certain fAD cases, and support the emerging theme that this disorder can stem from aberrant presenilin 1 function. This study also points at ER chaperones as targets for the development of counter-neurodegeneration therapies.


Subject(s)
Alzheimer Disease/metabolism , Amino Acid Substitution , Brain/metabolism , Presenilin-1/metabolism , Protein Aggregation, Pathological/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Brain/pathology , Cell Line , Mice , Mice, Knockout , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Presenilin-1/genetics , Proline/genetics , Proline/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Folding
6.
J Neurosci ; 37(49): 11947-11966, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29101243

ABSTRACT

Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid ß-protein (Aß), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aß, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aß depend on expression of APP and that the Aß-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aß localizing to synapses and binding of soluble Aß aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aß and suggest modulation of APP expression as a therapy for AD.SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid ß-protein (Aß) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aß-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aß localizing to synapses and genetic ablation of APP prevents both Aß binding and Aß-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/biosynthesis , Brain/metabolism , Neuronal Plasticity/physiology , Peptide Fragments/metabolism , Synapses/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/deficiency , Animals , Brain/pathology , Excitatory Postsynaptic Potentials/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Organ Culture Techniques , Protein Binding/physiology , Synapses/pathology
7.
Cereb Cortex ; 27(6): 3457-3470, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28407141

ABSTRACT

Hippocampus, a temporal lobe structure involved in learning and memory, receives information from all sensory modalities. Despite extensive research on the role of sensory experience in cortical map plasticity, little is known about whether and how sensory experience regulates functioning of the hippocampal circuits. Here, we show that 9 ± 2 days of whisker deprivation during early mouse development depresses activity of CA3 pyramidal neurons by several principal mechanisms: decrease in release probability, increase in the fraction of silent synapses, and reduction in intrinsic excitability. As a result of deprivation-induced presynaptic inhibition, CA3-CA1 synaptic facilitation was augmented at high frequencies, shifting filtering properties of synapses. The changes in the AMPA-mediated synaptic transmission were accompanied by an increase in NR2B-containing NMDA receptors and a reduction in the AMPA/NMDA ratio. The observed reconfiguration of the CA3-CA1 connections may represent a homeostatic adaptation to augmentation in synaptic activity during the initial deprivation phase. In adult mice, tactile disuse diminished intrinsic excitability without altering synaptic facilitation. We suggest that sensory experience regulates computations performed by the hippocampus by tuning its synaptic and intrinsic characteristics.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hippocampus/physiology , Nerve Net/physiology , Neurons/physiology , Sensory Deprivation/physiology , Synaptic Transmission/physiology , Age Factors , Animals , Animals, Newborn , Corticosterone/blood , Excitatory Postsynaptic Potentials/drug effects , Exploratory Behavior/physiology , In Vitro Techniques , Maze Learning/physiology , Mice , Mice, Inbred C57BL , N-Methylaspartate/metabolism , Nerve Net/drug effects , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/drug effects , Vibrissae/innervation , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
8.
Proc Natl Acad Sci U S A ; 112(25): E3291-9, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26056260

ABSTRACT

Stabilization of neuronal activity by homeostatic control systems is fundamental for proper functioning of neural circuits. Failure in neuronal homeostasis has been hypothesized to underlie common pathophysiological mechanisms in a variety of brain disorders. However, the key molecules regulating homeostasis in central mammalian neural circuits remain obscure. Here, we show that selective inactivation of GABAB, but not GABA(A), receptors impairs firing rate homeostasis by disrupting synaptic homeostatic plasticity in hippocampal networks. Pharmacological GABA(B) receptor (GABA(B)R) blockade or genetic deletion of the GB(1a) receptor subunit disrupts homeostatic regulation of synaptic vesicle release. GABA(B)Rs mediate adaptive presynaptic enhancement to neuronal inactivity by two principle mechanisms: First, neuronal silencing promotes syntaxin-1 switch from a closed to an open conformation to accelerate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly, and second, it boosts spike-evoked presynaptic calcium flux. In both cases, neuronal inactivity removes tonic block imposed by the presynaptic, GB(1a)-containing receptors on syntaxin-1 opening and calcium entry to enhance probability of vesicle fusion. We identified the GB(1a) intracellular domain essential for the presynaptic homeostatic response by tuning intermolecular interactions among the receptor, syntaxin-1, and the Ca(V)2.2 channel. The presynaptic adaptations were accompanied by scaling of excitatory quantal amplitude via the postsynaptic, GB(1b)-containing receptors. Thus, GABA(B)Rs sense chronic perturbations in GABA levels and transduce it to homeostatic changes in synaptic strength. Our results reveal a novel role for GABA(B)R as a key regulator of population firing stability and propose that disruption of homeostatic synaptic plasticity may underlie seizure's persistence in the absence of functional GABA(B)Rs.


Subject(s)
Hippocampus/physiology , Homeostasis , Neurons/metabolism , Receptors, GABA-B/metabolism , Animals , Cells, Cultured , Evoked Potentials , Hippocampus/cytology , Mice , Mice, Inbred BALB C
9.
J Neurosci ; 35(3): 985-98, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25609616

ABSTRACT

Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.


Subject(s)
Adenosine Triphosphate/metabolism , Hippocampus/metabolism , Neurons/metabolism , Presynaptic Terminals/metabolism , Synapsins/metabolism , Synaptic Vesicles/metabolism , Animals , Cells, Cultured , Mice , Mice, Knockout , Synaptic Transmission/physiology
10.
Article in English | MEDLINE | ID: mdl-27155204

ABSTRACT

OBJECTIVE: Anti-ribosomal-phosphoprotein antibodies (anti-Ribos.P Abs) are detected in 10-45% of NPSLE patients. Intracerebroventricular administration of anti-ribosomal-P Abs induces depression-like behaviour in mice. We aimed to discern the mechanism by which anti-Ribos.P Abs induce behavioural changes in mice. METHODS: Anti-Ribos.P Abs were exposed to human and rat neuronal cell cultures, as well as to human umbilical vein endothelial cell cultures for a control. The cellular localization of anti-Ribo.P Abs was found by an immunofluorescent technique using a confocal microscope. Identification of the target molecules was undertaken using a cDNA library. Immunohistochemistry and an inhibition assay were carried out to confirm the identity of the target molecules. Neuronal cell proliferation was measured by bromodeoxyuridine, and Akt and Erk expression by immunoblot. RESULTS: Human anti-Ribos.P Abs penetrated into human neuronal cells and rat hippocampal cell cultures in vitro, but not to endothelial cells as examined. Screening a high-content human cDNA-library with anti-Ribos.P Abs identified neuronal growth-associated protein (GAP43) as a target for anti-Ribos.P Abs. Ex vivo anti-Ribos.P Abs bind to mouse brain sections of hippocampus, dentate and amygdala. Anti-Ribos.P Abs brain-binding was prevented by GAP43 protein. Interestingly, GAP43 inhibited in a dose-dependent manner the anti-Ribos.P Abs binding to recombinant-ribosomal-P0, indicating mimicry between the ribosomal-P0 protein and GAP43. Furthermore, anti-Ribos.P Abs reduced neuronal cell proliferation activity in vitro (P < 0.001), whereas GAP43 decreased this inhibitory activity by a factor of 7.6. The last was related to Akt and Erk dephosphorylation. CONCLUSION: Anti-Ribos.P Abs penetrate neuronal cells in vitro by targeting GAP43. Anti -Ribos.P Abs inhibit neuronal-cell proliferation via inhibition of Akt and Erk. Our data contribute to deciphering the mechanism for anti-Ribos.P Abs' pathogenic activity in NPSLE.

11.
Nat Commun ; 14(1): 7002, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919286

ABSTRACT

The mechanisms that confer cognitive resilience to Alzheimer's Disease (AD) are not fully understood. Here, we describe a neural circuit mechanism underlying this resilience in a familial AD mouse model. In the prodromal disease stage, interictal epileptiform spikes (IESs) emerge during anesthesia in the CA1 and mPFC regions, leading to working memory disruptions. These IESs are driven by inputs from the thalamic nucleus reuniens (nRE). Indeed, tonic deep brain stimulation of the nRE (tDBS-nRE) effectively suppresses IESs and restores firing rate homeostasis under anesthesia, preventing further impairments in nRE-CA1 synaptic facilitation and working memory. Notably, applying tDBS-nRE during the prodromal phase in young APP/PS1 mice mitigates age-dependent memory decline. The IES rate during anesthesia in young APP/PS1 mice correlates with later working memory impairments. These findings highlight the nRE as a central hub of functional resilience and underscore the clinical promise of DBS in conferring resilience to AD pathology by restoring circuit-level homeostasis.


Subject(s)
Alzheimer Disease , Deep Brain Stimulation , Mice , Animals , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Midline Thalamic Nuclei/physiology , Mice, Transgenic , Cognition , Disease Models, Animal , Amyloid beta-Protein Precursor/metabolism
12.
Neurophotonics ; 10(1): 015008, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36970015

ABSTRACT

Significance: Perineuronal nets (PNNs) are extracellular matrix structures implicated in learning, memory, information processing, synaptic plasticity, and neuroprotection. However, our understanding of mechanisms governing the evidently important contribution of PNNs to central nervous system function is lacking. A primary cause for this gap of knowledge is the absence of direct experimental tools to study their role in vivo. Aim: We introduce a robust approach for quantitative longitudinal imaging of PNNs in brains of awake mice at subcellular resolution. Approach: We label PNNs in vivo with commercially available compounds and monitor their dynamics with two-photon imaging. Results: Using our approach, we show that it is possible to longitudinally follow the same PNNs in vivo while monitoring degradation and reconstitution of PNNs. We demonstrate the compatibility of our method to simultaneously monitor neuronal calcium dynamics in vivo and compare the activity of neurons with and without PNNs. Conclusion: Our approach is tailored for studying the intricate role of PNNs in vivo, while paving the road for elucidating their role in different neuropathological conditions.

13.
Nanoscale Adv ; 5(2): 344-348, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756258

ABSTRACT

Nucleobase crystals demonstrate unique intrinsic fluorescence properties in the visible spectral range. This is in contrast to their monomeric counterparts. Moreover, some nucleobases were found to exhibit red edge excitation shift. This behavior is uncommon in the field of organic supramolecular materials and could have implications in fields such as therapeutics of metabolic disorders and materials science.

14.
Nat Neurosci ; 26(6): 1021-1031, 2023 06.
Article in English | MEDLINE | ID: mdl-37188873

ABSTRACT

Early Alzheimer's disease (AD) is associated with hippocampal hyperactivity and decreased sleep quality. Here we show that homeostatic mechanisms transiently counteract the increased excitatory drive to CA1 neurons in AppNL-G-F mice, but that this mechanism fails in older mice. Spatial transcriptomics analysis identifies Pmch as part of the adaptive response in AppNL-G-F mice. Pmch encodes melanin-concentrating hormone (MCH), which is produced in sleep-active lateral hypothalamic neurons that project to CA1 and modulate memory. We show that MCH downregulates synaptic transmission, modulates firing rate homeostasis in hippocampal neurons and reverses the increased excitatory drive to CA1 neurons in AppNL-G-F mice. AppNL-G-F mice spend less time in rapid eye movement (REM) sleep. AppNL-G-F mice and individuals with AD show progressive changes in morphology of CA1-projecting MCH axons. Our findings identify the MCH system as vulnerable in early AD and suggest that impaired MCH-system function contributes to aberrant excitatory drive and sleep defects, which can compromise hippocampus-dependent functions.


Subject(s)
Alzheimer Disease , Hypothalamic Hormones , Mice , Animals , Alzheimer Disease/genetics , Neurons/physiology , Pituitary Hormones , Sleep , Mice, Transgenic
15.
J Neurosci ; 31(35): 12523-32, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21880914

ABSTRACT

Presynaptic inhibition via G-protein-coupled receptors (GPCRs) and voltage-gated Ca(2+) channels constitutes a widespread regulatory mechanism of synaptic strength. Yet, the mechanism of intermolecular coupling underlying GPCR-mediated signaling at central synapses remains unresolved. Using FRET spectroscopy, we provide evidence for formation of spatially restricted (<100 Å) complexes between GABA(B) receptors composed of GB(1a)/GB(2) subunits, Gα(o)ß(1)γ(2) G-protein heterotrimer, and Ca(V)2.2 channels in hippocampal boutons. GABA release was not required for the assembly but for structural reorganization of the precoupled complex. Unexpectedly, GB(1a) deletion disrupted intermolecular associations within the complex. The GB(1a) proximal C-terminal domain was essential for association of the receptor, Ca(V)2.2 and Gßγ, but was dispensable for agonist-induced receptor activation and cAMP inhibition. Functionally, boutons lacking this complex-formation domain displayed impaired presynaptic inhibition of Ca(2+) transients and synaptic vesicle release. Thus, compartmentalization of the GABA(B1a) receptor, Gßγ, and Ca(V)2.2 channel in a signaling complex is required for presynaptic inhibition at hippocampal synapses.


Subject(s)
Hippocampus/cytology , Neural Inhibition/physiology , Presynaptic Terminals/physiology , Receptors, GABA-B/metabolism , Signal Transduction/physiology , Synapses/physiology , Analysis of Variance , Animals , Baclofen/pharmacology , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Cyclic AMP/metabolism , Electric Stimulation , GABA Antagonists/pharmacology , GABA-B Receptor Agonists/pharmacology , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , Luminescent Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Confocal , Mutation/genetics , Neural Inhibition/drug effects , Organophosphorus Compounds/pharmacology , Pertussis Toxin/pharmacology , Picrotoxin/pharmacology , Presynaptic Terminals/drug effects , Rats , Rats, Wistar , Receptors, GABA-B/deficiency , Signal Transduction/genetics , Spectroscopy, Fourier Transform Infrared/methods , Synapses/drug effects , Synaptic Vesicles/metabolism
17.
STAR Protoc ; 3(1): 101115, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35118427

ABSTRACT

Spontaneous spiking activity depends on intrinsic excitability and synaptic input. Historically, synaptic activity has been mostly studied ex vivo. Here, we describe a versatile and robust protocol to record field excitatory postsynaptic potentials (fEPSPs) in behaving rodents. The protocol allows estimating the input-output relationship of a specific pathway, short-term and long-term plasticity, and their modulation by pharmacological or pharmacogenetic interventions and behavioral states. However, experimenters must be aware of the protocol's specificity and interpret results with care. For complete details on the use and execution of this profile, please refer to Styr et al. (2019).


Subject(s)
Excitatory Postsynaptic Potentials , Neuronal Plasticity , Synaptic Transmission , Animals , Female , Male , Mice
18.
Cell Rep ; 38(3): 110268, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045289

ABSTRACT

Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness. However, homeostatic down-regulation of CA1 MFR is disrupted during non-rapid eye movement (NREM) sleep and general anesthesia in fAD mouse models. The resultant hyperexcitability is attenuated by the mitochondrial dihydroorotate dehydrogenase (DHODH) enzyme inhibitor, which tunes MFR toward lower set-point values. Ex vivo fAD mutations impair downward MFR homeostasis, resulting in pathological MFR set points in response to anesthetic drug and inhibition blockade. Thus, firing rate dyshomeostasis of hippocampal circuits is masked during active wakefulness but surfaces during low-arousal brain states, representing an early failure of the silent disease stage.


Subject(s)
Alzheimer Disease/physiopathology , Neural Pathways/physiopathology , Sleep/physiology , Wakefulness/physiology , Anesthesia, General , Animals , Disease Models, Animal , Mice , Unconsciousness/chemically induced , Unconsciousness/physiopathology
19.
JCI Insight ; 7(17)2022 09 08.
Article in English | MEDLINE | ID: mdl-35980743

ABSTRACT

Development of resistance to chemo- and immunotherapies often occurs following treatment of melanoma brain metastasis (MBM). The brain microenvironment (BME), particularly astrocytes, cooperate toward MBM progression by upregulating secreted factors, among which we found that monocyte chemoattractant protein-1 (MCP-1) and its receptors, CCR2 and CCR4, were overexpressed in MBM compared with primary lesions. Among other sources of MCP-1 in the brain, we show that melanoma cells altered astrocyte secretome and evoked MCP-1 expression and secretion, which in turn induced CCR2 expression in melanoma cells, enhancing in vitro tumorigenic properties, such as proliferation, migration, and invasion of melanoma cells. In vivo pharmacological blockade of MCP-1 or molecular knockout of CCR2/CCR4 increased the infiltration of cytotoxic CD8+ T cells and attenuated the immunosuppressive phenotype of the BME as shown by decreased infiltration of Tregs and tumor-associated macrophages/microglia in several models of intracranially injected MBM. These in vivo strategies led to decreased MBM outgrowth and prolonged the overall survival of the mice. Our findings highlight the therapeutic potential of inhibiting interactions between BME and melanoma cells for the treatment of this disease.


Subject(s)
Brain Neoplasms , Melanoma , Animals , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/secondary , Chemokine CCL2/metabolism , Melanoma/drug therapy , Melanoma/pathology , Mice , Receptors, CCR2/metabolism , Tumor Microenvironment
20.
Curr Biol ; 31(15): 3292-3302.e6, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34146487

ABSTRACT

Not much is known about how the dentate gyrus (DG) and hippocampal CA3 networks, critical for memory and spatial processing, malfunction in Alzheimer's disease (AD). While studies of associative memory deficits in AD have focused mainly on behavior, here, we directly measured neurophysiological network dysfunction. We asked what the pattern of deterioration of different networks is during disease progression. We investigated how the associative memory-processing capabilities in different hippocampal subfields are affected by familial AD (fAD) mutations leading to amyloid-ß dyshomeostasis. Specifically, we focused on the DG and CA3, which are known to be involved in pattern completion and separation and are susceptible to pathological alterations in AD. To identify AD-related deficits in neural-ensemble dynamics, we recorded single-unit activity in wild-type (WT) and fAD model mice (APPSwe+PSEN1/ΔE9) in a novel tactile morph task, which utilizes the extremely developed somatosensory modality of mice. As expected from the sub-network regional specialization, we found that tactile changes induced lower rate map correlations in the DG than in CA3 of WT mice. This reflects DG pattern separation and CA3 pattern completion. In contrast, in fAD model mice, we observed pattern separation deficits in the DG and pattern completion deficits in CA3. This demonstration of region-dependent impairments in fAD model mice contributes to understanding of brain networks deterioration during fAD progression. Furthermore, it implies that the deterioration cannot be studied generally throughout the hippocampus but must be researched at a finer resolution of microcircuits. This opens novel systems-level approaches for analyzing AD-related neural network deficits.


Subject(s)
Alzheimer Disease , CA3 Region, Hippocampal , Dentate Gyrus , Alzheimer Disease/physiopathology , Animals , CA3 Region, Hippocampal/physiopathology , Dentate Gyrus/physiopathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL