Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Environ Manage ; 354: 120317, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387346

ABSTRACT

Olive mill wastewater sludge (OMWS) represents a residual pollutant generated by the olive oil industry, often stored in exposed evaporation ponds, leading to contamination of nearby land and water resources. Despite its promising composition, the valorization of OMWS remains underexplored compared to olive mill wastewater (OMW). This study aims to identify potent native microbial species within OMWS suitable for bioremediation and its transformation into a high-value organic fertilizer. The microbial screening, based on assessing OMWS tolerance and phosphate solubilization properties in vitro, followed by a singular inoculation using a mixture of OMWS and rock phosphate (RP). Identification of FUN 06 (Galactomyces Geotrichum), a fungal species, employed as an inoculant in the treatment of sterile OMWS supplemented with RP. Results demonstrate that fungal inoculation notably diminished OMWS phytotoxicity while enhancing its physicochemical parameters, nutrient concentrations, and removal of toxic organic compounds by up to 90% compared to the control, and enhances plant growth, offering a sustainable approach to tackle environmental concerns. Additionally, metataxonomic analysis unveiled FUN 06's propensity to enhance the presence of microbial species engaged in pollutant degradation. However, higher RP dosage (10%) appeared to adversely affect bioprocess efficiency, suggesting a potential dose-related effect. Overall, FUN 06, isolated from OMWS evaporation ponds, shows promise for effective bioremediation and sustainable reuse. In fact, our results indicate that targeted microbial inoculation stands as an effective strategy for mitigating pollutants in OMWS, facilitating its conversion into a nutrient-rich organo-mineral fertilizer suitable for direct use, promoting its beneficial reuse in agriculture, thereby presenting a promising avenue for olive oil waste management.


Subject(s)
Environmental Pollutants , Olea , Wastewater , Olea/chemistry , Sewage , Olive Oil , Fertilizers/analysis , Environmental Pollutants/analysis , Phosphates , Minerals , Industrial Waste/analysis , Waste Disposal, Fluid/methods
2.
Sci Total Environ ; 937: 173485, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38797404

ABSTRACT

The development of anthroposols has been proposed as a new environmentally friendly approach to ensuring the successful revegetation of phosphate mining sites. The phosphate industry's by-products, including phosphogypsum (PG), phosphate sludge (PS), and sewage sludge (SS), can be valuable resources in restoring the ecological balance of mined soil areas. The aim of this study was to safely and sustainably restore the ecological integrity of the phosphate mining site through the evaluation of nutrients and heavy metals dynamics in soil and plant tissues of three tree species and treated by-products containing 65 % PG, 30 % PS, and 5 % SS. The tree species used were Pistacia atlantica, Schinus molle, and Eucalyptus globulus. The experimental layout was a randomised complete block design with six replicates and three treatments. Growth diameter, height, nutrient uptakes and heavy metal dynamic were evaluated from the rhizosphere soils and plant tissues over two years. Hierarchical head maps of correlations between the measured growth parameters, soil and nutrient uptakes of the tree species were analysed using a phylogenetic generalised linear mixed model. S. molle and E. globulus had higher average diameter and height than P. atlantica plants. P. atlantica and S. molle showed greater nitrogen, phosphorus, potassium, calcium, and magnesium concentrations than E. globulus trees. Tree growth parameters were closely linked to soil nutrient bioavailability. The heavy metal accumulation ratio was higher in the E. globulus and S. molle leaves than in stems. Using by-products could be valorised for rehabilitating mine sites together with E. globulus and S. molle species.


Subject(s)
Eucalyptus , Mining , Phosphates , Pistacia , Soil Pollutants , Phosphates/analysis , Soil Pollutants/analysis , Sewage , Soil/chemistry , Environmental Restoration and Remediation/methods , Trees , Metals, Heavy/analysis , Schinus
3.
Front Plant Sci ; 14: 1186036, 2023.
Article in English | MEDLINE | ID: mdl-37351212

ABSTRACT

Salinity has become a major issue in various parts of the world negatively impacting agricultural activities and leading to diminished crop potential and lower yields. Such situation calls for urgent interventions such as adopting salt-tolerant crops to fill the gap in food and feed availability. Blue panicgrass (Panicum antidotale Retz.) is a promising salt-tolerant forage crop that has shown an appropriate adaptation and performance in the saline, arid, and desertic environments of southern Morocco. However, for obtaining a highest forage productivity with nutritional quality, optimization of the cutting interval is required. Thus, the objective of this study was to determine the optimal cutting time interval allowing high forage production and quality under high salinity conditions. This experiment was conducted over one entire year covering the summer and winter seasons. The effect of five cutting time intervals on selected agro-morphological traits, crop productivity, mineral nutrient accumulation, and forage quality of blue panicgrass in the region of Laayoune, southern Morocco. The finding of this study recommend that cutting blue panicgrass every 40 days maximized the annual fresh and dry forage yield as well as the protein yield, which reached 74, 22, and 2.9 t/ha, respectively. This study also revealed a significant effect of the season on both productivity and quality. However, forage yield declined during the winter and increased during the summer, while protein content increased during winter compared to summer. The mineral nutrient partitioning between shoots and roots, especially the K+/Na+ ratio, indicated that blue panicgrass has salt tolerance mechanism as it excluded sodium from the roots and compartmentalized it in the leaves. In conclusion, there is a potential of blue panicgrass on sustaining forage production under salt-affected drylands, as demonstrated by the response to two key questions: (a) a technical question to farmers for its adoption such as at which interval should blue panicgrass be harvested maximizing both forage yield and quality? And (b) a scientific question on how does blue panicgrass maintain high K+/Na+ ratio to cope with salinity stress?

4.
Plants (Basel) ; 10(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562429

ABSTRACT

Agricultural production in the Rehamna region, Morocco is limited with various challenges including drought and salinity. Introduction of climate resilient and rustic crops such as quinoa was an optimal solution to increase farmer's income and improve food security. This study summarizes results obtained from a research project aiming to develop quinoa value chain in Morocco. The study tackled several aspects including agronomic traits (yield and growth), transformation, quality (nutritional and antinutritional traits) and economic analysis and, finally, a strength-weaknesses-opportunities-threats analysis, lessons learned and development perspectives were presented. From an agronomic point of view, introduced new quinoa cultivars showed higher performance than locally cultivated seeds and, furthermore, the use of irrigation and organic amendment has tremendously improved seed yield by double and three times, respectively, compared to rainfed conditions. Nutritional analysis revealed that protein and phosphorus content remained stable after seed pearling while most of the micronutrients content decreased after seed pearling. However, saponins content was reduced by 68% using mechanical pearling compared to 57% using both traditional abrasion and washing. The economic analysis showed that production cost of quinoa seeds could be further decreased using mechanized intensive tools along with irrigation and organic amendment supply. This study revealed several lessons learned from the field experience and proposed several development actions for each value chain component that can be implemented within a national quinoa program.

SELECTION OF CITATIONS
SEARCH DETAIL