Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Blood ; 141(26): 3166-3183, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37084385

ABSTRACT

Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Mice , Animals , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Eukaryotic Initiation Factor-4F/genetics , Prohibitins , Genes, myc , RNA, Messenger/genetics
2.
J Immunol ; 211(5): 743-754, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37466373

ABSTRACT

Subset #201 is a clinically indolent subgroup of patients with chronic lymphocytic leukemia defined by the expression of stereotyped, mutated IGHV4-34/IGLV1-44 BCR Ig. Subset #201 is characterized by recurrent somatic hypermutations (SHMs) that frequently lead to the creation and/or disruption of N-glycosylation sites within the Ig H and L chain variable domains. To understand the relevance of this observation, using next-generation sequencing, we studied how SHM shapes the subclonal architecture of the BCR Ig repertoire in subset #201, particularly focusing on changes in N-glycosylation sites. Moreover, we profiled the Ag reactivity of the clonotypic BCR Ig expressed as rmAbs. We found that almost all analyzed cases from subset #201 carry SHMs potentially affecting N-glycosylation at the clonal and/or subclonal level and obtained evidence for N-glycan occupancy in SHM-induced novel N-glycosylation sites. These particular SHMs impact (auto)antigen recognition, as indicated by differences in Ag reactivity between the authentic rmAbs and germline revertants of SHMs introducing novel N-glycosylation sites in experiments entailing 1) flow cytometry for binding to viable cells, 2) immunohistochemistry against various human tissues, 3) ELISA against microbial Ags, and 4) protein microarrays testing reactivity against multiple autoantigens. On these grounds, N-glycosylation appears as relevant for the natural history of at least a fraction of Ig-mutated chronic lymphocytic leukemia. Moreover, subset #201 emerges as a paradigmatic case for the role of affinity maturation in the evolution of Ag reactivity of the clonotypic BCR Ig.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Glycosylation , Antigens/metabolism
3.
Blood ; 137(20): 2800-2816, 2021 05 20.
Article in English | MEDLINE | ID: mdl-33206936

ABSTRACT

The transformation of chronic lymphocytic leukemia (CLL) to high-grade B-cell lymphoma is known as Richter syndrome (RS), a rare event with dismal prognosis. In this study, we conducted whole-genome sequencing (WGS) of paired circulating CLL (PB-CLL) and RS biopsies (tissue-RS) from 17 patients recruited into a clinical trial (CHOP-O). We found that tissue-RS was enriched for mutations in poor-risk CLL drivers and genes in the DNA damage response (DDR) pathway. In addition, we identified genomic aberrations not previously implicated in RS, including the protein tyrosine phosphatase receptor (PTPRD) and tumor necrosis factor receptor-associated factor 3 (TRAF3). In the noncoding genome, we discovered activation-induced cytidine deaminase-related and unrelated kataegis in tissue-RS affecting regulatory regions of key immune-regulatory genes. These include BTG2, CXCR4, NFATC1, PAX5, NOTCH-1, SLC44A5, FCRL3, SELL, TNIP2, and TRIM13. Furthermore, differences between the global mutation signatures of pairs of PB-CLL and tissue-RS samples implicate DDR as the dominant mechanism driving transformation. Pathway-based clonal deconvolution analysis showed that genes in the MAPK and DDR pathways demonstrate high clonal-expansion probability. Direct comparison of nodal-CLL and tissue-RS pairs from an independent cohort confirmed differential expression of the same pathways by RNA expression profiling. Our integrated analysis of WGS and RNA expression data significantly extends previous targeted approaches, which were limited by the lack of germline samples, and it facilitates the identification of novel genomic correlates implicated in RS transformation, which could be targeted therapeutically. Our results inform the future selection of investigative agents for a UK clinical platform study. This trial was registered at www.clinicaltrials.gov as #NCT03899337.


Subject(s)
Clonal Evolution/genetics , Gene Expression Regulation, Neoplastic/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/pathology , RNA, Neoplasm/genetics , Transcriptome , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Base Sequence , Clone Cells/pathology , Combined Modality Therapy , Cyclophosphamide/administration & dosage , DNA Repair , Disease Progression , Doxorubicin/administration & dosage , Female , Gene Regulatory Networks , Genes, Neoplasm , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Male , Middle Aged , Mutation , Neoplasm Proteins/genetics , Prednisone/administration & dosage , Prospective Studies , RNA, Neoplasm/biosynthesis , Syndrome , Vincristine/administration & dosage , Whole Genome Sequencing
4.
Haematologica ; 108(11): 3011-3024, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37345470

ABSTRACT

Chronic lymphocytic leukemia (CLL) cells are highly dependent on interactions with the immunosuppressive tumor microenvironment (TME) for survival and proliferation. In the search for novel treatments, pro-inflammatory cytokines have emerged as candidates to reactivate the immune system. Among those, interleukin 27 (IL-27) has recently gained attention, but its effects differ among malignancies. Here, we utilized the Eµ-TCL1 and EBI3 knock-out mouse models as well as clinical samples from patients to investigate the role of IL-27 in CLL. Characterization of murine leukemic spleens revealed that the absence of IL-27 leads to enhanced CLL development and a more immunosuppressive TME in transgenic mice. Gene-profiling of T-cell subsets from EBI3 knock-out highlighted transcriptional changes in the CD8+ T-cell population associated with T-cell activation, proliferation, and cytotoxicity. We also observed an increased anti-tumor activity of CD8+ T cells in the presence of IL-27 ex vivo with murine and clinical samples. Notably, IL-27 treatment led to the reactivation of autologous T cells from CLL patients. Finally, we detected a decrease in IL-27 serum levels during CLL development in both pre-clinical and patient samples. Altogether, we demonstrated that IL-27 has a strong anti-tumorigenic role in CLL and postulate this cytokine as a promising treatment or adjuvant for this malignancy.


Subject(s)
Interleukin-27 , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cytokines , Immunosuppressive Agents , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice, Transgenic , T-Lymphocyte Subsets/pathology , Tumor Microenvironment
5.
BMC Cancer ; 19(1): 81, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30654767

ABSTRACT

BACKGROUND: Age-related genetic changes in lymphocyte subsets are not currently well documented. BACH2 is a transcription factor that plays an important role in immune-mediated homeostasis by tightly regulating PRDM1 expression in both B-cells and T-cells. BACH2 gene expression is highly sensitive to DNA damage in aged mice. This concept led us to investigate the variation in BACH2 and also PRDM1 expression in major lymphocyte subsets with age. METHODS: Lymphocyte subsets from 60 healthy donors, aged from 20 to 90 years, and 41 untreated chronic lymphocytic leukemia patients were studied. BACH2 and PRDM1 gene expression was analyzed by real-time quantitative PCR. BACH2 gene expression was correlated with its protein expression. Lymphocyte apoptosis was evaluated after intracellular oxidative stress-inducing etoposide treatment of T and B cells. RESULTS: Our analysis shows BACH2 mRNA downregulation with age in healthy donor CD4+, CD8+ T-cells and CD19+ B-cells. Decreased BACH2 expression was also correlated with an age-related reduction in CD8 + CD28+ T-cells. We found a strong correlation between age-related BACH2 downregulation and decreased CD4+ T-cell and CD19+ B-cell apoptosis. PRDM1, as expected, was significantly upregulated in CD4+ T-cells, CD8+ T-cells and CD19+ B-cells, and inversely correlated with BACH2. A comparison of untreated chronic lymphocytic leukemia patients with age-matched healthy donors reveals that BACH2 mRNA expression was further reduced in CD4+ T-cells, CD8+ T-cells and leukemic-B cells. PRDM1 gene expression was consequently significantly upregulated in CD4+ and CD8+ T-cells in chronic lymphocytic leukemia patients but not in their leukemic B-cells. CONCLUSION: Overall, our data suggest that BACH2 and PRDM1 genes are significantly correlated with age in human immune cells and may be involved in immunosenescence.


Subject(s)
Aging/immunology , Basic-Leucine Zipper Transcription Factors/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphocyte Subsets/metabolism , Positive Regulatory Domain I-Binding Factor 1/metabolism , Adult , Aged , Aged, 80 and over , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/immunology , Cellular Senescence/immunology , Down-Regulation/immunology , Female , Healthy Volunteers , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphocyte Subsets/immunology , Male , Middle Aged , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , RNA, Messenger/metabolism , Up-Regulation/immunology , Young Adult
6.
Haematologica ; 102(9): 1594-1604, 2017 09.
Article in English | MEDLINE | ID: mdl-28596280

ABSTRACT

Interactions between chronic lymphocytic leukemia (CLL) B cells and the bone marrow (BM) microenvironment play a major function in the physiopathology of CLL. Extracellular vesicles (EVs), which are composed of exosomes and microparticles, play an important role in cell communication. However, little is known about their role in CLL / microenvironment interactions. In the present study, EVs purified by ultracentrifugation from BM mesenchymal stromal cell (BM-MSC) cultures were added to CLL B cells. After their integration into CLL B cells, we observed a decrease of leukemic cell spontaneous apoptosis and an increase in their chemoresistance to several drugs, including fludarabine, ibrutinib, idelalisib and venetoclax after 24 hours. Spontaneous (P=0.0078) and stromal cell-derived factor 1α -induced migration capacities of CLL B cells were also enhanced (P=0.0020). A microarray study highlighted 805 differentially expressed genes between leukemic cells cultured with or without EVs. Of these, genes involved in the B-cell receptor pathway such as CCL3/4, EGR1/2/3, and MYC were increased. Interestingly, this signature presents important overlaps with other microenvironment stimuli such as B-cell receptor stimulation, CLL/nurse-like cells co-culture or those provided by a lymph node microenvironment. Finally, we showed that EVs from MSCs of leukemic patients also rescue leukemic cells from spontaneous or drug-induced apoptosis. However, they induce a higher migration and also a stronger gene modification compared to EVs of healthy MSCs. In conclusion, we show that EVs play a crucial role in CLL B cells/BM microenvironment communication.


Subject(s)
Bone Marrow Cells/metabolism , Cell Movement , Extracellular Vesicles/metabolism , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Bone Marrow Cells/pathology , Coculture Techniques , Extracellular Vesicles/pathology , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Cells, Cultured
7.
Br J Haematol ; 175(1): 43-54, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27378086

ABSTRACT

Richter syndrome (RS) is associated with chemotherapy resistance and a poor historical median overall survival (OS) of 8-10 months. We conducted a phase II trial of standard CHOP-21 (cyclophosphamide, doxorubicin, vincristine, prednisolone every 21 d) with ofatumumab induction (Cycle 1: 300 mg day 1, 1000 mg day 8, 1000 mg day 15; Cycles 2-6: 1000 mg day 1) (CHOP-O) followed by 12 months ofatumumab maintenance (1000 mg given 8-weekly for up to six cycles). Forty-three patients were recruited of whom 37 were evaluable. Seventy-three per cent were aged >60 years. Over half of the patients received a fludarabine and cyclophosphamide-based regimen as prior CLL treatment. The overall response rate was 46% (complete response 27%, partial response 19%) at six cycles. The median progression-free survival was 6·2 months (95% confidence interval [CI] 4·9-14·0 months) and median OS was 11·4 months (95% CI 6·4-25·6 months). Treatment-naïve and TP53-intact patients had improved outcomes. Fifteen episodes of neutropenic fever and 46 non-neutropenic infections were observed. There were no treatment-related deaths. Seven patients received platinum-containing salvage at progression, with only one patient obtaining an adequate response to proceed to allogeneic transplantation. CHOP-O with ofatumumab maintenance provides minimal benefit beyond CHOP plus rutuximab. Standard immunochemotherapy for RS remains wholly inadequate for unselected RS. Multinational trials incorporating novel agents are urgently needed.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Lymphoma/drug therapy , Lymphoma/etiology , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , Disease Progression , Doxorubicin/adverse effects , Doxorubicin/therapeutic use , Female , Humans , Induction Chemotherapy , Lymphoma/diagnosis , Maintenance Chemotherapy , Male , Middle Aged , Neoplasm Staging , Positron Emission Tomography Computed Tomography , Prednisone/adverse effects , Prednisone/therapeutic use , Survival Analysis , Syndrome , Treatment Outcome , Vincristine/adverse effects , Vincristine/therapeutic use
8.
Mol Med ; 21: 123-33, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25584781

ABSTRACT

MicroRNAs (or miRs) play a crucial role in chronic lymphocytic leukemia (CLL) physiopathology and prognosis. In addition, circulating microRNAs in body fluids have been proposed as new biomarkers. We investigated the expression of matched cellular and serum circulating microRNA-150 by quantitative real-time PCR (qPCR) from purified CD19(+) cells or from CLL serums obtained at diagnosis in a cohort of 273/252 CLL patients with a median follow-up of 78 months (range 7-380) and correlated it to other biological or clinical parameters. We showed that miR-150 was significantly overexpressed in CLL cells/serums compared with healthy subjects (P < 0.0001). Among CLL patients, a low cellular miR-150 expression level was associated with tumor burden, disease aggressiveness and poor prognostic factors. In contrast, a high level of serum miR-150 was associated with tumor burden markers and some markers of poor prognosis. Similarly, cellular and serum miR-150 also predicted treatment-free survival (TFS) and overall survival (OS) in an opposite manner: patients with low cellular/serum miR-150 levels have median TFS of 40/111 months compared with high-level patients who have a median TFS of 122/60 months (P < 0.0001/P = 0.0066). Similar results were observed for OS. We also found that cellular and serum miR-150 levels vary in an opposite manner during disease progression and that cellular miR-150 could be regulated by its release into the extracellular space. Cellular and serum levels of miR-150 are associated with opposite clinical prognoses and could be used to molecularly monitor disease evolution as a new prognostic factor in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Case-Control Studies , Disease Progression , Exosomes/metabolism , Follow-Up Studies , Gene Expression , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphocytosis/genetics , MicroRNAs/blood , Middle Aged , Prognosis , Recurrence , Tumor Burden
9.
Cancer Immunol Immunother ; 64(2): 213-24, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25341809

ABSTRACT

In multiple myeloma (MM), bone marrow mesenchymal stromal cells (BM-MSCs) play an important role in pathogenesis and disease progression by supporting myeloma cell growth and immune escape. Previous studies have suggested that direct and indirect interactions between malignant cells and BM-MSCs result in constitutive abnormal immunomodulatory capacities in MM BM-MSCs. The aim of this study was to investigate the mechanisms that underlie these MM BM-MSCs abnormalities. We demonstrated that MM BM-MSCs exhibit abnormal expression of CD40/40L, VCAM1, ICAM-1, LFA-3, HO-1, HLA-DR and HLA-ABC. Furthermore, an overproduction of IL-6 (1,806 ± 152.5 vs 719.6 ± 18.22 ng/mL; p = 0.035) and a reduced secretion of IL-10 (136 ± 15.02 vs 346.4 ± 35.32 ng/mL; p = 0.015) were quantified in culture medium when MM BM-MSCs were co-cultured with T lymphocytes compared to co-cultures with healthy donor (HD) BM-MSCs. An increased Th17/Treg ratio was observed when T cells were co-cultured with MM BM-MSCs compared to co-cultures with HD BM-MSCs (0.955 vs 0.055). Together, these observations demonstrated that altered immunomodulation capacities of MM BM-MSCs were linked to variations in their immunogenicity and secretion profile. These alterations lead not only to a reduced inhibition of T cell proliferation but also to a shift in the Th17/Treg balance. We identified factors that are potentially responsible for these alterations, such as IL-6, VCAM-1 and CD40, which could also be associated with MM pathogenesis and progression.


Subject(s)
Mesenchymal Stem Cells/immunology , Multiple Myeloma/immunology , CD40 Antigens/metabolism , Coculture Techniques , Cytokines/metabolism , Humans , Immunomodulation , Inflammation/immunology , Inflammation/metabolism , Inflammation Mediators/metabolism , Lymphocyte Activation/immunology , Lymphocyte Count , Mesenchymal Stem Cells/metabolism , Multiple Myeloma/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
10.
Bioinform Adv ; 3(1): vbad158, 2023.
Article in English | MEDLINE | ID: mdl-38023327

ABSTRACT

Motivation: The fast and accurate detection of similar geometrical arrangements of protein residues, known as 3D structural motifs, is highly relevant for many applications such as binding region and catalytic site detection, drug discovery and structure conservation analyses. With the recent publication of new protein structure prediction methods, the number of available protein structures is exploding, which makes efficient and easy-to-use tools for identifying 3D structural motifs essential. Results: We present an open-source Python package that enables the search for both exact and mutated motifs with position-specific residue substitutions. The tool is efficient, flexible, accurate, and suitable to run both on computer clusters and personal laptops. Two successful applications of pyScoMotif for catalytic site identification are showcased. Availability and implementation: The pyScoMotif package can be installed from the PyPI repository and is also available at https://github.com/3BioCompBio/pyScoMotif. It is free to use for non-commercial purposes.

11.
Front Immunol ; 14: 1265969, 2023.
Article in English | MEDLINE | ID: mdl-37822925

ABSTRACT

Following their discovery at the end of the 20th century, extracellular vesicles (EVs) ranging from 50-1,000 nm have proven to be paramount in the progression of many cancers, including hematological malignancies. EVs are a heterogeneous group of cell-derived membranous structures that include small EVs (commonly called exosomes) and large EVs (microparticles). They have been demonstrated to participate in multiple physiological and pathological processes by allowing exchange of biological material (including among others proteins, DNA and RNA) between cells. They are therefore a crucial way of intercellular communication. In this context, malignant cells can release these extracellular vesicles that can influence their microenvironment, induce the formation of a tumorigenic niche, and prepare and establish distant niches facilitating metastasis by significantly impacting the phenotypes of surrounding cells and turning them toward supportive roles. In addition, EVs are also able to manipulate the immune response and to establish an immunosuppressive microenvironment. This in turn allows for ideal conditions for heightened chemoresistance and increased disease burden. Here, we review the latest findings and reports studying the effects and therapeutic potential of extracellular vesicles in various hematological malignancies. The study of extracellular vesicles remains in its infancy; however, rapid advances in the analysis of these vesicles in the context of disease allow us to envision prospects to improve the detection and treatment of hematological malignancies.


Subject(s)
Cell-Derived Microparticles , Exosomes , Extracellular Vesicles , Hematologic Neoplasms , Neoplasms , Humans , Extracellular Vesicles/metabolism , Hematologic Neoplasms/pathology , Neoplasms/metabolism , Exosomes/metabolism , Cell-Derived Microparticles/pathology , Tumor Microenvironment
12.
Pharmaceutics ; 15(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36839879

ABSTRACT

Intercellular communication, through direct and indirect cell contact, is mandatory in multicellular organisms. These last years, the microenvironment, and in particular, transfer by extracellular vesicles (EVs), has emerged as a new communication mechanism. Different biological fluids and cell types are common sources of EVs. EVs play different roles, acting as signalosomes, biomarkers, and therapeutic agents. As therapeutic agents, MSC-derived EVs display numerous advantages: they are biocompatible, non-immunogenic, and stable in circulation, and they are able to cross biological barriers. Furthermore, EVs have a great potential for drug delivery. Different EV isolation protocols and loading methods have been tested and compared. Published and ongoing clinical trials, and numerous preclinical studies indicate that EVs are safe and well tolerated. Moreover, the latest studies suggest their applications as nanocarriers. The current review will describe the potential for MSC-derived EVs as drug delivery systems (DDS) in disease treatment, and their advantages. Thereafter, we will outline the different EV isolation methods and loading techniques, and analyze relevant preclinical studies. Finally, we will describe ongoing and published clinical studies. These elements will outline the benefits of MSC-derived EV DDS over several aspects.

13.
Cancers (Basel) ; 15(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37296864

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Treatment of PDAC remains a major challenge. This study aims to evaluate, in vitro, the use of human umbilical cord mesenchymal stromal cell (UC-MSC)-derived EVs to specifically target pancreatic cancer cells. EVs were isolated from the FBS-free supernatants of the cultured UC-MSCs by ultracentrifugation and characterized by several methods. EVs were loaded with scramble or KRASG12D-targeting siRNA by electroporation. The effects of control and loaded EVs on different cell types were evaluated by assessing cell proliferation, viability, apoptosis and migration. Later, the ability of EVs to function as a drug delivery system for doxorubicin (DOXO), a chemotherapeutic drug, was also evaluated. Loaded EVs exhibited different kinetic rates of uptake by three cell lines, namely, BxPC-3 cells (pancreatic cancer cell line expressing KRASwt), LS180 cells (colorectal cell line expressing KRASG12D) and PANC-1 cells (pancreatic cell line expressing KRASG12D). A significant decrease in the relative expression of the KRASG12D gene after incubation with KRAS siRNA EVs was observed by real-time PCR. KRASG12D siRNA EVs significantly reduced the proliferation, viability and migration of the KRASG12D cell lines compared to scramble siRNA EVs. An endogenous EV production method was applied to obtain DOXO-loaded EVs. Briefly, UC-MSCs were treated with DOXO. After 24 h, UC-MSCs released DOXO-loaded EVs. DOXO-loaded EVs were rapidly taken up by PANC-1 cells and induced apoptotic cell death more efficiently than free DOXO. In conclusion, the use of UC-MSC-derived EVs as a drug delivery system for siRNAs or drugs could be a promising approach for the targeted treatment of PDAC.

14.
Front Immunol ; 14: 1267550, 2023.
Article in English | MEDLINE | ID: mdl-38130717

ABSTRACT

Introduction: Mesenchymal stromal cells (MSC) are one of the main cellular components of bone marrow (BM) microenvironment. MSC play a key role in tissue regeneration, but they are also capable of immunomodulating activity. With host aging, MSC undergo age-related changes, which alter these functions, contributing to the set-up of "inflammaging", which is known to be the basis for the development of several diseases of the elderly, including cancer. However, there's few data investigating this facet of MSC, mainly obtained using murine models or replicative senescence. The aim of this research was to identify morphological, molecular and functional alterations of human bone marrow-derived MSC from young (yBM-MSC) and old (oBM-MSC) healthy donors. Methods: MSC were identified by analysis of cell-surface markers according to the ISCT criteria. To evaluate response to inflammatory status, MSC were incubated for 24h in the presence of IL-1ß, IFN-α, IFN-É£ and TNF-α. Macrophages were obtained by differentiation of THP-1 cells through PMA exposure. For M1 polarization experiments, a 24h incubation with LPS and IFN-É£ was performed. MSC were plated at the bottom of the co-culture transwell system for all the time of cytokine exposure. Gene expression was evaluated by real-time PCR after RNA extraction from BM-MSC or THP-1 culture. Secreted cytokines levels were quantitated through ELISA assays. Results: Aging MSC display changes in size, morphology and granularity. Higher levels of ß-Gal, reactive oxygen species (ROS), IL-6 and IL-8 and impaired colony-forming and cell cycle progression abilities were found in oBM-MSC. Gene expression profile seems to vary according to subjects' age and particularly in oBM-MSC seem to be characterized by an impaired immunomodulating activity, with a reduced inhibition of macrophage M1 status. The comparative analysis of microRNA (miRNA) expression in yBM-MSC and oBM-MSC revealed a significant difference for miRNA known to be involved in macrophage polarization and particularly miR-193b-3p expression is strongly increased after co-culture of macrophages with yBM-MSC. Conclusion: There are profound differences in terms of morphology, gene and miRNA expression and immunomodulating properties among yBM-MSC and oBM-MSC, supporting the critical role of aging BM microenvironment on senescence, immune-mediated disorders and cancer pathogenesis.


Subject(s)
Mesenchymal Stem Cells , MicroRNAs , Neoplasms , Humans , Mice , Animals , Aged , Transcriptome , Bone Marrow/metabolism , Cytokines/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Neoplasms/metabolism , Tumor Microenvironment
15.
Cancers (Basel) ; 15(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37190261

ABSTRACT

Peptide receptor radionuclide therapy with 177Lu-DOTATATE improves the outcome of patients with somatostatin receptor (SSTR)-expressing neuroendocrine tumours. Nevertheless, stable disease has been the main response pattern observed, with some rare complete responses. Lu-177 exerts about two-thirds of its biological effects via the indirect effects of ionizing radiation that generate reactive oxygen species, eventually leading to oxidative damage and cell death. This provides a rationale for targeting the antioxidant defence system in combination with 177Lu-DOTATATE. In the present study, the radiosensitizing potential and the safety of depleting glutathione (GSH) levels using buthionine sulfoximine (BSO) during 177Lu-DOTATATE therapy were assessed in vitro and in vivo using a xenograft mouse model. In vitro, the combination resulted in a synergistic effect in cell lines exhibiting a BSO-mediated GSH decrease. In vivo, BSO neither influenced 177Lu-DOTATATE biodistribution nor induced liver, kidney or bone marrow toxicity. In terms of efficacy, the combination resulted in reduced tumour growth and metabolic activity. Our results showed that disturbing the cell redox balance using a GSH synthesis inhibitor increased 177Lu-DOTATATE efficacy without additional toxicity. Targeting the antioxidant defence system opens new safe treatment combination opportunities with 177Lu-DOTATATE.

16.
Blood Cancer Discov ; 4(1): 54-77, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36108149

ABSTRACT

Small extracellular vesicle (sEV, or exosome) communication among cells in the tumor microenvironment has been modeled mainly in cell culture, whereas their relevance in cancer pathogenesis and progression in vivo is less characterized. Here we investigated cancer-microenvironment interactions in vivo using mouse models of chronic lymphocytic leukemia (CLL). sEVs isolated directly from CLL tissue were enriched in specific miRNA and immune-checkpoint ligands. Distinct molecular components of tumor-derived sEVs altered CD8+ T-cell transcriptome, proteome, and metabolome, leading to decreased functions and cell exhaustion ex vivo and in vivo. Using antagomiRs and blocking antibodies, we defined specific cargo-mediated alterations on CD8+ T cells. Abrogating sEV biogenesis by Rab27a/b knockout dramatically delayed CLL pathogenesis. This phenotype was rescued by exogenous leukemic sEV or CD8+ T-cell depletion. Finally, high expression of sEV-related genes correlated with poor outcomes in CLL patients, suggesting sEV profiling as a prognostic tool. In conclusion, sEVs shape the immune microenvironment during CLL progression. SIGNIFICANCE: sEVs produced in the leukemia microenvironment impair CD8+ T-cell mediated antitumor immune response and are indispensable for leukemia progression in vivo in murine preclinical models. In addition, high expression of sEV-related genes correlated with poor survival and unfavorable clinical parameters in CLL patients. See related commentary by Zhong and Guo, p. 5. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Extracellular Vesicles , Leukemia, Lymphocytic, Chronic, B-Cell , Mice , Animals , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Transcriptome , Immunity , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Tumor Microenvironment/genetics
17.
Haematologica ; 97(4): 608-15, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22058221

ABSTRACT

BACKGROUND: Interactions with the microenvironment, such as bone marrow mesenchymal stromal cells and nurse-like cells, protect chronic lymphocytic leukemia cells from spontaneous and drug-induced apoptosis. This protection is partially mediated by the chemokine SDF-1α (CXCL12) and its receptor CXCR4 (CD184) present on the chronic lymphocytic leukemia cell surface. DESIGN AND METHODS: Here, we investigated the ability of AMD3100, a CXCR4 antagonist, to sensitize chronic lymphocytic leukemia cells to chemotherapy in a chronic lymphocytic leukemia/mesenchymal stromal cell based or nurse-like cell based microenvironment co-culture model. RESULTS: AMD3100 decreased CXCR4 expression signal (n=15, P=0.0078) and inhibited actin polymerization/migration in response to SDF-1α (n=8, P<0.01) and pseudoemperipolesis (n=10, P=0.0010), suggesting that AMD3100 interferes with chronic lymphocytic leukemia cell trafficking. AMD3100 did not have a direct effect on apoptosis when chronic lymphocytic leukemia cells were cultured alone (n=10, P=0.8812). However, when they were cultured with SDF-1α, mesenchymal stromal cells or nurse-like cells (protecting them from apoptosis, P<0.001), chronic lymphocytic leukemia cell pre-treatment with AMD3100 significantly inhibited these protective effects (n=8, P<0.01) and decreased the expression of the anti-apoptotic proteins MCL-1 and FLIP. Furthermore, combining AMD3100 with various drugs (fludarabine, cladribine, valproïc acid, bortezomib, flavopiridol, methylprednisolone) in our mesenchymal stromal cell co-culture model enhanced drug-induced apoptosis (n=8, P<0.05) indicating that AMD3100 could mobilize chronic lymphocytic leukemia cells away from their protective microenvironment, making them more accessible to conventional therapies. CONCLUSIONS: Taken together, these data demonstrate that interfering with the SDF-1α/CXCR4 axis by using AMD3100 inhibited chronic lymphocytic leukemia cell trafficking and microenvironment-mediated protective effects. Combining AMD3100 with other drugs may, therefore, represent a promising therapeutic approach to kill chronic lymphocytic leukemia cells.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Communication/drug effects , Heterocyclic Compounds/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment/drug effects , Actins/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Benzylamines , Cell Movement/drug effects , Cell Survival/drug effects , Chemokine CXCL12/pharmacology , Coculture Techniques , Cyclams , Heterocyclic Compounds/therapeutic use , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Protein Binding/drug effects , Protein Binding/immunology , Protein Multimerization/drug effects , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/immunology , Receptors, CXCR4/metabolism
18.
Nat Genet ; 54(11): 1675-1689, 2022 11.
Article in English | MEDLINE | ID: mdl-36333502

ABSTRACT

The value of genome-wide over targeted driver analyses for predicting clinical outcomes of cancer patients is debated. Here, we report the whole-genome sequencing of 485 chronic lymphocytic leukemia patients enrolled in clinical trials as part of the United Kingdom's 100,000 Genomes Project. We identify an extended catalog of recurrent coding and noncoding genetic mutations that represents a source for future studies and provide the most complete high-resolution map of structural variants, copy number changes and global genome features including telomere length, mutational signatures and genomic complexity. We demonstrate the relationship of these features with clinical outcome and show that integration of 186 distinct recurrent genomic alterations defines five genomic subgroups that associate with response to therapy, refining conventional outcome prediction. While requiring independent validation, our findings highlight the potential of whole-genome sequencing to inform future risk stratification in chronic lymphocytic leukemia.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Whole Genome Sequencing , Mutation , Genomics , Prognosis
19.
Cell Immunol ; 270(2): 207-16, 2011.
Article in English | MEDLINE | ID: mdl-21700275

ABSTRACT

Mesenchymal stromal cells (MSC) can be expanded from different sources. We compared the influence of inflammation and TLR ligation on the phenotype and function of MSC derived from bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ). WJ-MSC were featured by a lack of TLR4 expression. While inflammation upregulated TLR3 in all three MSC types, TLR4 upregulation was observed only on BM-MSC. TLR ligation increased the production of inflammatory cytokines in BM- and AT-MSC but not in WJ-MSC and augmented anti-inflammatory cytokines in AT-MSC. Although inflammation increased in all MSC types the secretion of inflammatory cytokines, additional TLR triggering did not have further effect on WJ-MSC. The immunosuppressive potential of WJ-MSC on MLR was affected neither by inflammation nor by TLR triggering. This resistance was related to an overproduction of HGF. These data indicate that MSC source could be of importance while designing immunomodulating cell therapy in transplantation.


Subject(s)
Mesenchymal Stem Cells/immunology , Stromal Cells/immunology , Toll-Like Receptors/metabolism , Adipose Tissue/cytology , Adipose Tissue/immunology , Base Sequence , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , Cell Separation , Cytokines/genetics , Cytokines/metabolism , Dinoprostone/biosynthesis , Female , Hepatocyte Growth Factor/biosynthesis , Humans , In Vitro Techniques , Infant, Newborn , Inflammation/genetics , Inflammation/metabolism , Lymphocyte Culture Test, Mixed , Mesenchymal Stem Cells/cytology , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Stromal Cells/cytology , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptors/genetics , Umbilical Cord/cytology , Umbilical Cord/immunology
20.
Blood ; 113(21): 5237-45, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19144983

ABSTRACT

Aberrant expression of microRNAs has been recently associated with chronic lymphocytic leukemia (CLL) outcome. Although disease evolution can be predicted by several prognostic factors, a better outcome individualization in a given patient is still of utmost interest. Here, we showed that miR-29c and miR-223 expression levels decreased significantly with progression from Binet stage A to C were significantly lower in poor prognostic subgroups (defined by several prognostic factors) and could significantly predict treatment-free survival (TFS) and overall survival (OS). Furthermore, we developed a quantitative real-time polymerase chain reaction (qPCR) score combining miR-29c, miR-223, ZAP70, and LPL (from 0 to 4 poor prognostic markers) to stratify treatment and death risk in a cohort of 110 patients with a median follow-up of 72 months (range, 2-312). Patients with a score of 0/4, 1/4, 2/4, 3/4, and 4/4 had a median TFS of greater than 312, of 129, 80, 36, and 19 months, respectively (hazard ratio, HR(0/4 < 1/4 < 2/4 < 3/4 < 4/4) = 17.00, P < .001). Patients with a score of 0-1/4, 2-3/4, and 4/4 had a median OS of greater than 312, of 183 and 106 months, respectively (HR(0/4 < 1/4 < 2/4 < 3/4 < 4/4) = 13.69, P = .001). This score will help to identify, among the good and poor prognosis subgroups, patients who will need early therapy and thus will require a closer follow-up.


Subject(s)
Down-Regulation/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , MicroRNAs/genetics , Adult , Aged , Aged, 80 and over , Disease Progression , Female , Follow-Up Studies , Humans , Lipoprotein Lipase/genetics , Male , Middle Aged , Polymerase Chain Reaction , Prognosis , RNA, Messenger/analysis , Risk Assessment , Severity of Illness Index , ZAP-70 Protein-Tyrosine Kinase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL