Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Med Vet Entomol ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300685

ABSTRACT

Aedes aegypti is an important mosquito vector of human disease with a wide distribution across the globe. Climatic conditions and ecological pressure drive differences in the biology of several populations of this mosquito species, including blood-feeding behaviour and vector competence. However, no study has compared activity and/or sleep among different populations/lineages of Ae. aegypti. Having recently established sleep-like states in three mosquito species with observable differences in timing and amount of sleep among species, we investigated differences in activity and sleep levels among 17 Ae. aegypti lines drawn from both its native range in Africa and its invasive range across the global tropics. Activity monitoring indicates that all the lines show consistent diurnal activity, but significant differences in activity level, sleep amount, number of sleep bouts and bout duration were observed among the lines. The variation in day activity was associated with differences in host preference and ancestry for the lineages collected in Africa. This study provides evidence that the diurnal sleep and activity profiles for Ae. aegypti are consistent, but there are significant population differences for Ae. aegypti sleep and activity levels and interactions with host species may significantly impact mosquito activity.

2.
bioRxiv ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38854138

ABSTRACT

Survival through periods of drought is critical for mosquitoes to reside in semi-arid regions with humans, but water sources may be limited. Previous studies have shown that dehydrated mosquitoes will increase blood feeding propensity, but how this would occur over extended dry periods is unknown. Following a bloodmeal, prolonged exposure to dry conditions increased secondary blood feeding in mosquitoes by nearly two-fold, and chronic blood feeding allowed mosquitoes to survive twenty days without access to water sources. This refeeding did not alter the number of eggs generated, suggesting this refeeding is for hydration and nutrient replenishment. Exposure to desiccating conditions following a bloodmeal resulted in increased activity, decreased sleep levels, and prompted a return of CO2 sensing before egg deposition. The increased blood feeding during the vitellogenic stage and higher survival during dry periods are predicted to increase pathogen transmission and explain the elevated levels of specific arbovirus cases during dry conditions. These results solidify our understanding of the role of dry periods on mosquito blood feeding and how mosquito dehydration contributes to vectorial capacity and disease transmission dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL