Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Genet Med ; 18(5): 483-93, 2016 05.
Article in English | MEDLINE | ID: mdl-26204423

ABSTRACT

PURPOSE: Cockayne syndrome (CS) is a rare, autosomal-recessive disorder characterized by microcephaly, impaired postnatal growth, and premature pathological aging. It has historically been considered a DNA repair disorder; fibroblasts from classic patients often exhibit impaired transcription-coupled nucleotide excision repair. Previous studies have largely been restricted to case reports and small series, and no guidelines for care have been established. METHODS: One hundred two study participants were identified through a network of collaborating clinicians and the Amy and Friends CS support groups. Families with a diagnosis of CS could also self-recruit. Comprehensive clinical information for analysis was obtained directly from families and their clinicians. RESULTS AND CONCLUSION: We present the most complete evaluation of Cockayne syndrome to date, including detailed information on the prevalence and onset of clinical features, achievement of neurodevelopmental milestones, and patient management. We confirm that the most valuable prognostic factor in CS is the presence of early cataracts. Using this evidence, we have created simple guidelines for the care of individuals with CS. We aim to assist clinicians in the recognition, diagnosis, and management of this condition and to enable families to understand what problems they may encounter as CS progresses.Genet Med 18 5, 483-493.


Subject(s)
Cockayne Syndrome/diagnosis , Cockayne Syndrome/genetics , DNA Repair Enzymes/genetics , Adolescent , Adult , Child , Child, Preschool , Cockayne Syndrome/epidemiology , Cockayne Syndrome/physiopathology , DNA Helicases/genetics , DNA Repair/genetics , Female , Humans , Infant , Male , Poly-ADP-Ribose Binding Proteins , Transcription Factors/genetics , Young Adult
2.
Am J Med Genet A ; 170(3): 773-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26749132

ABSTRACT

Cockayne syndrome is caused by biallelic ERCC8 (CSA) or ERCC6 (CSB) mutations and is characterized by growth restriction, microcephaly, developmental delay, and premature pathological aging. Typically affected patients also have dermal photosensitivity. Although Cockayne syndrome is considered a DNA repair disorder, patients with UV-sensitive syndrome, with ERCC8 (CSA) or ERCC6 (CSB) mutations have indistinguishable DNA repair defects, but none of the extradermal features of Cockayne syndrome. We report novel missense mutations affecting a conserved loop in the ERCC6 (CSB) protein, associated with the Cockayne syndrome phenotype. Indeed, the amino acid sequence of this loop is more highly conserved than the adjacent helicase motifs V and VI, suggesting that this is a crucial structural component of the SWI/SNF family of proteins, to which ERCC6 (CSB) belongs. These comprise two RecA-like domains, separated by an interdomain linker, which interact through helicase motif VI. As the observed mutations are likely to act through destabilizing the tertiary protein structure, this prompted us to re-evaluate ERCC6 (CSB) mutation data in relation to the structure of SWI/SNF proteins. Our analysis suggests that antimorphic mutations cause Cockayne syndrome and that biallelic interdomain linker deletions produce more severe phenotypes. Based on our observations, we propose that further investigation of the pathogenic mechanisms underlying Cockayne syndrome should focus on the effect of antimorphic rather than null ERCC6 (CSB) mutations.


Subject(s)
Cockayne Syndrome/genetics , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Mutation, Missense , Protein Interaction Domains and Motifs/genetics , Amino Acid Motifs , Amino Acid Sequence , Child, Preschool , Cockayne Syndrome/diagnosis , DNA Helicases/chemistry , DNA Repair Enzymes/chemistry , Facies , Female , Genetic Association Studies , Humans , Infant , Kyphosis/diagnostic imaging , Male , Models, Molecular , Molecular Sequence Data , Phenotype , Poly-ADP-Ribose Binding Proteins , Protein Conformation , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL