Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Nat Immunol ; 15(6): 571-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24777532

ABSTRACT

Intestinal regulatory T cells (Treg cells) are necessary for the suppression of excessive immune responses to commensal bacteria. However, the molecular machinery that controls the homeostasis of intestinal Treg cells has remained largely unknown. Here we report that colonization of germ-free mice with gut microbiota upregulated expression of the DNA-methylation adaptor Uhrf1 in Treg cells. Mice with T cell-specific deficiency in Uhrf1 (Uhrf1(fl/fl)Cd4-Cre mice) showed defective proliferation and functional maturation of colonic Treg cells. Uhrf1 deficiency resulted in derepression of the gene (Cdkn1a) that encodes the cyclin-dependent kinase inhibitor p21 due to hypomethylation of its promoter region, which resulted in cell-cycle arrest of Treg cells. As a consequence, Uhrf1(fl/fl)Cd4-Cre mice spontaneously developed severe colitis. Thus, Uhrf1-dependent epigenetic silencing of Cdkn1a was required for the maintenance of gut immunological homeostasis. This mechanism enforces symbiotic host-microbe interactions without an inflammatory response.


Subject(s)
Colitis/immunology , Colon/immunology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Epigenesis, Genetic , Nuclear Proteins/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CCAAT-Enhancer-Binding Proteins , Cell Cycle Checkpoints , Cell Proliferation , Cells, Cultured , Clostridium/immunology , Colitis/genetics , Colon/microbiology , DNA Methylation , Gene Expression Profiling , Interleukin-2 , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microbiota/immunology , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering , Symbiosis/immunology , Ubiquitin-Protein Ligases , Up-Regulation
2.
Genes Cells ; 29(7): 549-566, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38811355

ABSTRACT

DNA methyltransferases and Ten-Eleven Translocation (TET) proteins regulate the DNA methylation and demethylation cycles during mouse embryonic development. Although DNMT1 mainly plays a role in the maintenance of DNA methylation after DNA replication, it is also reported to possess de novo methyltransferase capacity. However, its physiological significance remains unclear. Here, we demonstrate that full-length DNMT1 (FL) and a mutant lacking the N-terminus necessary for its maintenance activity (602) confer the differentiation potential of mouse Dnmt1, Dnmt3a, and Dnmt3b (Dnmts-TKO) embryonic stem cells (ESCs). Both FL and 602 inhibit the spontaneous differentiation of Dnmts-TKO ESCs in the undifferentiated state. Dnmts-TKO ESCs showed loss of DNA methylation and de-repression of primitive endoderm-related genes, but these defects were partially restored in Dnmts-TKO + FL and Dnmts-TKO + 602 ESCs. Upon differentiation, Dnmts-TKO + FL ESCs show increased 5mC and 5hmC levels across chromosomes, including pericentromeric regions. In contrast, Dnmts-TKO + 602 ESCs didn't accumulate 5mC, and sister chromatids showed 5hmC asynchronously. Furthermore, in comparison with DNMT1_602, DNMT1_FL effectively promoted commitment to the epiblast-like cells and beyond, driving cell-autonomous mesendodermal and germline differentiation through embryoid body-based methods. With precise target selectivity achieved by its N-terminal region, DNMT1 may play a role in gene regulation leading to germline development.


Subject(s)
Cell Differentiation , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Animals , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , Mice , Germ Layers/metabolism , Germ Layers/cytology , DNA Methyltransferase 3B , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , DNA Methyltransferase 3A/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics
3.
Mol Cell ; 68(2): 350-360.e7, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053958

ABSTRACT

The proper location and timing of Dnmt1 activation are essential for DNA methylation maintenance. We demonstrate here that Dnmt1 utilizes two-mono-ubiquitylated histone H3 as a unique ubiquitin mark for its recruitment to and activation at DNA methylation sites. The crystal structure of the replication foci targeting sequence (RFTS) of Dnmt1 in complex with H3-K18Ub/23Ub reveals striking differences to the known ubiquitin-recognition structures. The two ubiquitins are simultaneously bound to the RFTS with a combination of canonical hydrophobic and atypical hydrophilic interactions. The C-lobe of RFTS, together with the K23Ub surface, also recognizes the N-terminal tail of H3. The binding of H3-K18Ub/23Ub results in spatial rearrangement of two lobes in the RFTS, suggesting the opening of its active site. Actually, incubation of Dnmt1 with H3-K18Ub/23Ub increases its catalytic activity in vitro. Our results therefore shed light on the essential role of a unique ubiquitin-binding module in DNA methylation maintenance.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methylation , Histones/chemistry , Ubiquitin/chemistry , Animals , Crystallography, X-Ray , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Histones/genetics , Histones/metabolism , Humans , Protein Binding , Protein Structure, Quaternary , Ubiquitin/genetics , Ubiquitin/metabolism , Xenopus laevis
4.
Adv Exp Med Biol ; 1389: 45-68, 2022.
Article in English | MEDLINE | ID: mdl-36350506

ABSTRACT

In mammals, three major DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains. For instance, Dnmt3a and Dnmt3b each contain a Pro-Trp-Trp-Pro (PWWP) domain that recognizes the histone H3K36me2/3 mark, an Atrx-Dnmt3-Dnmt3l (ADD) domain that recognizes unmodified histone H3 tail, and a catalytic domain that methylates CpG sites. Dnmt1 contains an N-terminal independently folded domain (NTD) that interacts with a variety of regulatory factors, a replication foci-targeting sequence (RFTS) domain that recognizes the histone H3K9me3 mark and H3 ubiquitylation, a CXXC domain that recognizes unmodified CpG DNA, two tandem Bromo-Adjacent-homology (BAH1 and BAH2) domains that read the H4K20me3 mark with BAH1, and a catalytic domain that preferentially methylates hemimethylated CpG sites. In this chapter, the structures and functions of these domains are described.


Subject(s)
DNA Methylation , Histones , Animals , Histones/metabolism , DNA Methyltransferase 3A , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Modification Methylases/genetics , DNA/metabolism , Mammals/genetics
5.
Nucleic Acids Res ; 45(4): e24, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28204635

ABSTRACT

Since the discovery of oxidative demethylation of methylcytosine (mC) by Tet enzymes, an analytical method has been urgently needed that would enable the identification of mC and hydroxymethylcytosine (hmC) at the single base resolution level, because their roles in gene regulation are quite different from each other. However, the bisulfite sequencing method, the gold standard for DNA methylation analysis at present, does not distinguish them. Recently reported alternative methods, such as oxBS-seq and TAB-seq, are not even capable of determining mC and hmC simultaneously. Here, we report a novel method for the direct identification of mC, hmC and unmodified cytosine (C) at a single base resolution. We named this method the Enzyme-assisted Identification of Genome Modification Assay (EnIGMA), and it was demonstrated to indeed have a highly efficient and reliable analytic capacity for distinguishing them. We also successfully applied this novel method to the analysis of the maintenance of the DNA methylation status of imprinted H19-DMR. Importantly, hydroxymethylation plays an ambivalent role in the maintenance of the genome imprinting memory in parental genomes essential for normal development, shedding new light on the epigenetic regulation in ES cells.


Subject(s)
5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/analysis , Animals , DNA (Cytosine-5-)-Methyltransferase 1 , Genome , Genomics , Humans , Mice , Mice, Inbred C57BL , RNA, Long Noncoding/genetics , Sequence Analysis, DNA
6.
Chembiochem ; 19(8): 865-872, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29392812

ABSTRACT

In chromatin, 5-methylcytosine (mC), which represents the fifth nucleobase in genomic DNA, plays a role as an inducer of epigenetic changes. Tumor cells exhibit aberrant DNA methylation patterns, and inhibition of human DNA cytosine-5 methyltransferase (DNMT), which is responsible for generating mC in CpG sequences, is an effective strategy to treat various cancers. Here, we describe the design, synthesis, and evaluation of the properties of 2-amino-4-halopyridine-C-nucleosides (dX P) and oligodeoxyribonucleotides (ODNs) containing dX P as a novel mechanism-based inhibitor of DNMTs. The designed ODN containing X PpG forms a complex with DNMTs by covalent bonding through a nucleophilic aromatic substitution (SN Ar) reaction, and its cell proliferation activity is investigated. This study suggests that dX P in a CpG sequence of DNA could serve as a potential nucleic acid drug lead in cancer chemotherapy and a useful chemical probe for studies of epigenetics. Our molecular design using a SN Ar reaction would be useful for DNMTs and other protein-DNA interactions.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Halogens/chemistry , Oligodeoxyribonucleotides/pharmacology , Pyridines/chemistry , DNA (Cytosine-5-)-Methyltransferases/metabolism , Epigenesis, Genetic/drug effects , Humans , Oligodeoxyribonucleotides/chemistry
7.
Nucleic Acids Res ; 43(21): 10200-12, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26319017

ABSTRACT

The α, ß and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1's chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg(2+) or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Nucleosomes/metabolism , Chromobox Protein Homolog 5 , Histones/chemistry , Humans , Lysine/metabolism , Magnesium/chemistry , Methylation , Protein Binding , Protein Isoforms/metabolism , Protein Multimerization
8.
Bioorg Med Chem ; 24(18): 4254-4262, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27460669

ABSTRACT

Oxidation of 5-methylcytosine (5mC) is catalyzed by ten-eleven translocation (TET) enzymes to produce 5-hydroxymethylcytosine (5hmC) and following oxidative products. The oxidized nucleotides were shown to be the intermediates for DNA demethylation, as the nucleotides are removed by base excision repair system initiated by thymine DNA glycosylase. A simple and accurate method to determine initial oxidation product 5hmC at single base resolution in genomic DNA is necessary to understand demethylation mechanism. Recently, we have developed a new catalytic oxidation reaction using micelle-incarcerated oxidants to oxidize 5hmC to form 5-formylcytosine (5fC), and subsequent bisulfite sequencing can determine the positions of 5hmC in DNA. In the present study, we described the optimization of the catalytic oxidative bisulfite sequencing (coBS-seq), and its application to the analysis of 5hmC in genomic DNA at single base resolution in a quantitative manner. As the oxidation step showed quite low damage on genomic DNA, the method allows us to down scale the sample to be analyzed.


Subject(s)
5-Methylcytosine/analogs & derivatives , Oxidants/chemistry , Sequence Analysis, DNA/methods , 5-Methylcytosine/chemistry , Adamantane/analogs & derivatives , Adamantane/chemistry , Animals , Cyclic N-Oxides/chemistry , Cytosine/analogs & derivatives , Cytosine/chemistry , DNA, Single-Stranded/chemistry , Embryonic Stem Cells , Iodobenzenes/chemistry , Mice , Micelles , Onium Compounds/chemistry , Oxidation-Reduction , Sodium Dodecyl Sulfate/chemistry , Sulfites/chemistry , Temperature
9.
Adv Exp Med Biol ; 945: 63-86, 2016.
Article in English | MEDLINE | ID: mdl-27826835

ABSTRACT

In mammals, three DNA methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. Dnmt3-like (Dnmt3l), which is a member of the Dnmt3 family but does not possess DNA methylation activity, was reported to be indispensable for global methylation in germ cells. Once the DNA methylation patterns are established, maintenance-type DNA methyltransferase Dnmt1 faithfully propagates them to the next generation via replication. All Dnmts possess multiple domains, and in this chapter, the structures and functions of these domains are described.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methylation/genetics , Protein Domains/genetics , Animals , DNA/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Embryo Implantation/genetics , Humans , Mice , Protein Structure, Secondary , DNA Methyltransferase 3B
10.
J Biol Chem ; 289(1): 379-86, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24253042

ABSTRACT

Dnmt1 is responsible for the maintenance DNA methylation during replication to propagate methylation patterns to the next generation. The replication foci targeting sequence (RFTS), which plugs the catalytic pocket, is necessary for recruitment of Dnmt1 to the replication site. In the present study we found that the DNA methylation activity of Dnmt1 was DNA length-dependent and scarcely methylated 12-bp short hemi-methylated DNA. Contrarily, the RFTS-deleted Dnmt1 and Dnmt1 mutants that destroyed the hydrogen bonds between the RFTS and catalytic domain showed significant DNA methylation activity even toward 12-bp hemi-methylated DNA. The DNA methylation activity of the RFTS-deleted Dnmt1 toward 12-bp hemi-methylated DNA was strongly inhibited on the addition of RFTS, but to a lesser extent by Dnmt1 harboring the mutations that impair the hydrogen bond formation. The SRA domain of Uhrf1, which is a prerequisite factor for maintenance methylation and selectively binds to hemi-methylated DNA, stimulated the DNA methylation activity of Dnmt1. The SRA to Dnmt1 concentration ratio was the determinant for the maximum stimulation. In addition, a mutant SRA, which had lost the DNA binding activity but was able to bind to Dnmt1, stimulated the DNA methylation activity of Dnmt1. The results indicate that the DNA methylation activity of Dnmt1 was stimulated on the direct interaction of the SRA and Dnmt1. The SRA facilitated acceptance of the 12-bp fluorocytosine-containing DNA by the catalytic center. We propose that the SRA removes the RFTS plug from the catalytic pocket to facilitate DNA acceptance by the catalytic center.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methylation/physiology , DNA/chemistry , Nuclear Proteins/chemistry , Amino Acid Sequence , Animals , CCAAT-Enhancer-Binding Proteins , Catalytic Domain , DNA/genetics , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Sequence Deletion , Ubiquitin-Protein Ligases
11.
Bioorg Med Chem Lett ; 25(24): 5667-71, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26584880

ABSTRACT

5-Methylcytosine (5mC) is oxidized by ten-eleven translocation (TET) enzymes. This process followed by thymine DNA glycosylase is proposed to be the mechanism for methylcytosine demethylation. 5-Hydroxymethylcytosine (5hmC) is one of the most important key oxidative metabolites in the demethylation process, and therefore, simple and accurate method to determine 5hmC at single base resolution is desired. In the present study, we developed a mild catalytic oxidation of 5-hmC using micelle incarcerated oxidants that enables to determine the position of 5hmC at single base resolution.


Subject(s)
Cytosine/analogs & derivatives , Micelles , 5-Methylcytosine/analogs & derivatives , Base Sequence , Catalysis , Cytosine/chemistry , Mass Spectrometry , Oxidation-Reduction , Sulfites/chemistry
12.
J Biol Chem ; 288(9): 6351-62, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23316048

ABSTRACT

The methyl-CpG binding domain (MBD) protein MBD4 participates in DNA repair as a glycosylase that excises mismatched thymine bases in CpG sites and also functions in transcriptional repression. Unlike other MBD proteins, MBD4 recognizes not only methylated CpG dinucleotides ((5m)CG/(5m)CG) but also T/G mismatched sites generated by spontaneous deamination of 5-methylcytosine ((5m)CG/TG). The glycosylase activity of MBD4 is also implicated in active DNA demethylation initiated by the deaminase-catalyzed conversion of 5-methylcytosine to thymine. Here, we report the crystal structures of the MBD of MBD4 (MBDMBD4) complexed with (5m)CG/(5m)CG and (5m)CG/TG. The crystal structures show that the DNA interface of MBD4 has flexible structural features and harbors an extensive water network that supports its dual base specificities. Combined with the results of biochemical analyses, the crystal structure of MBD4 bound to 5-hydroxymethylcytosine further demonstrates that MBDMBD4 is able to recognize a wide range of 5-methylcytosine modifications through the unique water network. The versatile base recognition ability of MBDMBD4 implies multifunctional roles for MBD4 in the regulation of dynamic DNA methylation patterns coupled with deamination and/or oxidation of 5-methylcytosine.


Subject(s)
5-Methylcytosine/chemistry , Cytosine/analogs & derivatives , Endodeoxyribonucleases/chemistry , 5-Methylcytosine/metabolism , Animals , Crystallography, X-Ray , Cytosine/chemistry , Cytosine/metabolism , DNA Methylation/physiology , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Humans , Mice , Protein Structure, Tertiary , Structure-Activity Relationship
13.
Proc Natl Acad Sci U S A ; 108(22): 9055-9, 2011 May 31.
Article in English | MEDLINE | ID: mdl-21518897

ABSTRACT

Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291-1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/physiology , Amino Acid Sequence , Animals , Catalytic Domain , CpG Islands , Crystallography, X-Ray/methods , DNA/chemistry , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , Gene Silencing , Mice , Molecular Conformation , Molecular Sequence Data , Protein Conformation , Protein Structure, Tertiary , S-Adenosylmethionine/chemistry
14.
Nature ; 450(7171): 908-12, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-17994007

ABSTRACT

DNA methyltransferase (cytosine-5) 1 (Dnmt1) is the principal enzyme responsible for maintenance of CpG methylation and is essential for the regulation of gene expression, silencing of parasitic DNA elements, genomic imprinting and embryogenesis. Dnmt1 is needed in S phase to methylate newly replicated CpGs occurring opposite methylated ones on the mother strand of the DNA, which is essential for the epigenetic inheritance of methylation patterns in the genome. Despite an intrinsic affinity of Dnmt1 for such hemi-methylated DNA, the molecular mechanisms that ensure the correct loading of Dnmt1 onto newly replicated DNA in vivo are not understood. The Np95 (also known as Uhrf1 and ICBP90) protein binds methylated CpG through its SET and RING finger-associated (SRA) domain. Here we show that localization of mouse Np95 to replicating heterochromatin is dependent on the presence of hemi-methylated DNA. Np95 forms complexes with Dnmt1 and mediates the loading of Dnmt1 to replicating heterochromatic regions. By using Np95-deficient embryonic stem cells and embryos, we show that Np95 is essential in vivo to maintain global and local DNA methylation and to repress transcription of retrotransposons and imprinted genes. The link between hemi-methylated DNA, Np95 and Dnmt1 thus establishes key steps of the mechanism for epigenetic inheritance of DNA methylation.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA/metabolism , Epigenesis, Genetic , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Animals , CCAAT-Enhancer-Binding Proteins , CpG Islands/genetics , DNA/chemistry , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Replication , Embryonic Stem Cells/metabolism , Genomic Imprinting , HeLa Cells , Heterochromatin/genetics , Heterochromatin/metabolism , Humans , Mice , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Structure, Tertiary , Retroelements/genetics , Transcription, Genetic , Ubiquitin-Protein Ligases
15.
Int J Mol Sci ; 14(7): 14647-58, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23857059

ABSTRACT

Members of the microRNA-29 (miR-29) family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1) and thymine DNA glycosylase (TDG). Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , MicroRNAs/metabolism , 3' Untranslated Regions , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , DNA Methyltransferase 3A , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Mixed Function Oxygenases , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Messenger/metabolism , Thymine DNA Glycosylase/genetics , Thymine DNA Glycosylase/metabolism , DNA Methyltransferase 3B
16.
J Biol Chem ; 286(18): 15698-706, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21388951

ABSTRACT

The transmembrane adaptor protein Cbp (or PAG1) functions as a suppressor of Src-mediated tumor progression by promoting the inactivation of Src. The expression of Cbp is down-regulated in Src-transformed cells and in various human cancer cells, suggesting a potential role for Cbp as a tumor suppressor. However, the mechanisms underlying the down-regulation of Cbp remain unknown. The present study shows that Cbp expression is down-regulated by epigenetic histone modifications via the MAPK/PI3K pathway. In mouse embryonic fibroblasts, transformation by oncogenic Src and Ras induced a marked down-regulation of Cbp expression. The levels of Cbp expression were inversely correlated with the activity of MEK and Akt, and Cbp down-regulation was suppressed by inhibiting MEK and PI3K. Src transformation did not affect the stability of Cbp mRNA, the transcriptional activity of the cbp promoter, or the DNA methylation status of the cbp promoter CpG islands. However, Cbp expression was restored by treatment with histone deacetylase (HDAC) inhibitors and by siRNA-mediated knockdown of HDAC1/2. Src transformation significantly decreased the acetylation levels of histone H4 and increased the trimethylation levels of histone H3 lysine 27 in the cbp promoter. EGF-induced Cbp down-regulation was also suppressed by inhibiting MEK and HDAC. Furthermore, the inhibition of MEK or HDAC restored Cbp expression in human cancer cells harboring Cbp down-regulation through promoter hypomethylation. These findings suggest that Cbp down-regulation is primarily mediated by epigenetic histone modifications via oncogenic MAPK/PI3K pathways in a subset of cancer cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epigenesis, Genetic , Histones/metabolism , MAP Kinase Signaling System , Membrane Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Protein Processing, Post-Translational , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Histone Deacetylase 1/antagonists & inhibitors , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/antagonists & inhibitors , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Histone Deacetylase Inhibitors/pharmacology , Histones/genetics , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Membrane Proteins/genetics , Methylation/drug effects , Mice , Mice, Knockout , Mitogen-Activated Protein Kinases/genetics , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphoproteins/genetics , Proto-Oncogene Proteins pp60(c-src)/genetics , Proto-Oncogene Proteins pp60(c-src)/metabolism , Tumor Suppressor Proteins/genetics , ras Proteins/genetics , ras Proteins/metabolism
17.
Biochem J ; 437(1): 141-8, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21510846

ABSTRACT

The Dnmt3a gene, which encodes de novo-type DNA methyltransferase, encodes two isoforms, full-length Dnmt3a and Dnmt3a2, which lacks the N-terminal 219 amino acid residues. We found that Dnmt3a showed higher DNA-binding and DNA-methylation activities than Dnmt3a2. The N-terminal sequence from residues 1 to 211 was able to bind to DNA, but could not distinguish methylated and unmethylated CpG. Its binding to DNA was inhibited by a major groove binder. Four basic amino acid residues, Lys51, Lys53, Arg177 and Arg179, in the N-terminal region were crucial for the DNA-binding activity. The ectopically expressed N-terminal sequence (residues 1-211) was localized in nuclei, whereas that harbouring mutations at the four basic amino acid residues was also detected in the cytoplasm. The DNA-methylation activity of Dnmt3a with the mutations was suppressed under physiological salt conditions, which is similar that of Dnmt3a2. In addition, ectopically expressed Dnmt3a with mutations, as well as Dnmt3a2, could not be retained efficiently in nuclei on salt extraction. We conclude that the DNA-binding activity of the N-terminal domain contributes to the DNA-methyltransferase activity via anchoring of the whole molecule to DNA under physiological salt conditions.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA/metabolism , Binding Sites , Cells, Cultured , DNA/chemistry , DNA Methylation , DNA Methyltransferase 3A , HeLa Cells , Humans , Protein Structure, Tertiary
18.
Int J Mol Sci ; 13(7): 8259-8272, 2012.
Article in English | MEDLINE | ID: mdl-22942701

ABSTRACT

DNA methylation of promoters is linked to transcriptional silencing of protein-coding genes, and its alteration plays important roles in cancer formation. For example, hypermethylation of tumor suppressor genes has been seen in some cancers. Alteration of methylation in the promoters of microRNAs (miRNAs) has also been linked to transcriptional changes in cancers; however, no systematic studies of methylation and transcription of miRNAs have been reported. In the present study, to clarify the relation between DNA methylation and transcription of miRNAs, next-generation sequencing and microarrays were used to analyze the methylation and expression of miRNAs, protein-coding genes, other non-coding RNAs (ncRNAs), and pseudogenes in the human breast cancer cell lines MCF7 and the adriamycin (ADR) resistant cell line MCF7/ADR. DNA methylation in the proximal promoter of miRNAs is tightly linked to transcriptional silencing, as it is with protein-coding genes. In protein-coding genes, highly expressed genes have CpG-rich proximal promoters whereas weakly expressed genes do not. This is only rarely observed in other gene categories, including miRNAs. The present study highlights the epigenetic similarities and differences between miRNA and protein-coding genes.


Subject(s)
Breast Neoplasms/genetics , DNA Methylation , MicroRNAs/genetics , Breast Neoplasms/metabolism , CpG Islands , Female , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , MCF-7 Cells , MicroRNAs/metabolism , Sequence Analysis, DNA , Transcription Initiation Site , Transcriptome
19.
PLoS One ; 17(1): e0262277, 2022.
Article in English | MEDLINE | ID: mdl-34986190

ABSTRACT

DNA methylation (DNAme; 5-methylcytosine, 5mC) plays an essential role in mammalian development, and the 5mC profile is regulated by a balance of opposing enzymatic activities: DNA methyltransferases (DNMTs) and Ten-eleven translocation dioxygenases (TETs). In mouse embryonic stem cells (ESCs), de novo DNAme by DNMT3 family enzymes, demethylation by the TET-mediated conversion of 5mC to 5-hydroxymethylation (5hmC), and maintenance of the remaining DNAme by DNMT1 are actively repeated throughout cell cycles, dynamically forming a constant 5mC profile. Nevertheless, the detailed mechanism and physiological significance of this active cyclic DNA modification in mouse ESCs remain unclear. Here by visualizing the localization of DNA modifications on metaphase chromosomes and comparing whole-genome methylation profiles before and after the mid-S phase in ESCs lacking Dnmt1 (1KO ESCs), we demonstrated that in 1KO ESCs, DNMT3-mediated remethylation was interrupted during and after DNA replication. This results in a marked asymmetry in the distribution of 5hmC between sister chromatids at mitosis, with one chromatid being almost no 5hmC. When introduced in 1KO ESCs, the catalytically inactive form of DNMT1 (DNMT1CI) induced an increase in DNAme in pericentric heterochromatin and the DNAme-independent repression of IAPEz, a retrotransposon family, in 1KO ESCs. However, DNMT1CI could not restore the ability of DNMT3 to methylate unmodified dsDNA de novo in S phase in 1KO ESCs. Furthermore, during in vitro differentiation into epiblasts, 1KO ESCs expressing DNMT1CI showed an even stronger tendency to differentiate into the primitive endoderm than 1KO ESCs and were readily reprogrammed into the primitive streak via an epiblast-like cell state, reconfirming the importance of DNMT1 enzymatic activity at the onset of epiblast differentiation. These results indicate a novel function of DNMT1, in which DNMT1 actively regulates the timing and genomic targets of de novo methylation by DNMT3 in an enzymatic activity-dependent and independent manner, respectively.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methylation/genetics , DNA Methyltransferase 3A/genetics , Mouse Embryonic Stem Cells/metabolism , 5-Methylcytosine/metabolism , Animals , Cell Differentiation/genetics , DNA Modification Methylases/genetics , DNA-Binding Proteins/genetics , Genomic Imprinting/genetics , Heterochromatin/genetics , Mice , Mice, Knockout , Retroelements/genetics
20.
J Reprod Dev ; 57(5): 579-85, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21666347

ABSTRACT

Manipulation of preimplantation embryos in vitro, such as in vitro fertilization (IVF), in vitro culture (IVC), intracytoplasmic sperm injection (ICSI), somatic cell nuclear transfer (SCNT) and other assisted reproduction technologies (ART), has contributed to the development of infertility treatment and new animal reproduction methods. However, such embryos often exhibit abnormal DNA methylation patterns in imprinted genes and centromeric satellite repeats. These DNA methylation patterns are established and maintained by three DNA methyltransferases: Dnmt1, Dnmt3a and Dnmt3b. Dnmt3b is responsible for the creation of methylation patterns during the early stage of embryogenesis and consists of many alternative splice variants that affect methylation activity; nevertheless, the roles of these variants have not yet been identified. In this study, we found an alternatively spliced variant of Dnmt3b lacking exon 6 (Dnmt3bΔ6) that is specific to mouse IVC embryos. Dnmt3bΔ6 also showed prominent expression in embryonic stem (ES) cells derived from in vitro manipulated embryos. Interestingly, IVC blastocysts were hypomethylated in centromeric satellite repeat regions that could be susceptible to methylation by Dnmt3b. In vitro methylation activity assays showed that Dnmt3bΔ6 had lower activity than normal Dnmt3b. Our findings suggest that Dnmt3bΔ6 could induce a hypomethylation status especially in in vitro manipulated embryos.


Subject(s)
Alternative Splicing , Blastocyst/cytology , Blastocyst/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Embryonic Stem Cells/metabolism , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Blastocyst/enzymology , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Embryo Culture Techniques , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Female , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Mice, Inbred C57BL , Pregnancy , Rats , Rats, Inbred F344 , Specimen Handling , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL