Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Small ; : e2403267, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982953

ABSTRACT

Carbon-based perovskite solar cells (PSCs) coupled with solution-processed hole transport layers (HTLs) have shown potential owing to their combination of low cost and high performance. However, the commonly used poly(3-hexylthiophene) (P3HT) semicrystalline-polymer HTL dominantly shows edge-on molecular orientation, in which the alkyl side chains directly contact the perovskite layer, resulting in an electronically poor contact at the perovskite/P3HT interface. The study adopts a synergetic strategy comprising of additive and solvent engineering to transfer the edge-on molecular orientation of P3HT HTL into 3D molecular orientation. The target P3HT HTL possesses improved charge transport as well as enhanced moisture-repelling capability. Moreover, energy level alignment between target P3HT HTL and perovskite layer is realized. As a result, the champion devices with small (0.04 cm2) and larger areas (1 cm2) deliver notable efficiencies of 20.55% and 18.32%, respectively, which are among the highest efficiency of carbon-electrode PSCs.

2.
Small ; 19(42): e2301037, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37330659

ABSTRACT

Many devices heavily rely on combinatorial material optimization. However, new material alloys are classically developed by studying only a fraction of giant chemical space, while many intermediate compositions remain unmade in light of the lack of methods to synthesize gapless material libraries. Here report a high-throughput all-in-one material platform to obtain and study compositionally-tunable alloys from solution is reported. This strategy is applied to make all Csx MAy FAz PbI3 perovskite alloys (MA and FA stand for methylammonium and formamidinium, respectively), in less than 10 min, on a single film, on which 520 unique alloys are then studied. Through stability mapping of all these alloys in air supersaturated with moisture, a range of targeted perovskites are found, which are then chosen to make efficient and stable solar cells in relaxed fabrication conditions, in ambient air. This all-in-one platform provides access to an unprecedented library of compositional space with no unmade alloys, and hence aids in a comprehensive accelerated discovery of efficient energy materials.

3.
Nanotechnology ; 34(21)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36801855

ABSTRACT

Tin-lead perovskite-based photodetectors have a wide light-absorption wavelength range, which spans 1000 nm. However, the preparation of the mixed tin-lead perovskite films faces two great obstacles, namely easy oxidation of Sn2+to Sn4+and fast crystallization from tin-lead perovskite precursor solutions, thus further resulting in poor morphology and high density of defects in tin-lead perovskite films. In this study, we demonstrated a high-performance of near-infrared photodetectors prepared from a stable low-bandgap (MAPbI3)0.5(FASnI3)0.5film modified with 2-fluorophenethylammonium iodide (2-F-PEAI). The addition engineering can efficiently improve the crystallization of (MAPbI3)0.5(FASnI3)0.5films through the coordination binding between Pb2+and N atom in 2-F-PEAI, and resulting in a uniform and dense (MAPbI3)0.5(FASnI3)0.5film. Moreover, 2-F-PEAI suppressed Sn2+oxidation and effectively passivated defects in the (MAPbI3)0.5(FASnI3)0.5film, thereby significantly reducing the dark current in the PDs. Consequently, the near-infrared photodetectors showed a high responsivity with a specific detectivity of over 1012Jones at 800 to near-1000 nm. Additionally, the stability of PDs incorporated with 2-F-PEAI has been significantly improved under air conditions, and the device with the 2-F-PEAI ratio of 400:1 retained 80% of its initial efficiency after 450 h storage in air without encapsulation. Finally, 5 × 5 cm2photodetector arrays were fabricated to demonstrate the potential utility of the Sn-Pb perovskite photodetector in optical imaging and optoelectronic applications.

4.
Small ; 18(3): e2104623, 2022 01.
Article in English | MEDLINE | ID: mdl-34837464

ABSTRACT

Fused-ring electron donors boost the efficiency of organic solar cells (OSCs), but they suffer from high cost and low yield for their large synthetic complexity (SC > 30%). Herein, the authors develop a series of simple non-fused-ring electron donors, PF1 and PF2, which alternately consist of furan-3-carboxylate and 2,2'-bithiophene. Note that PF1 and PF2 present very small SC of 9.7% for their inexpensive raw materials, facile synthesis, and high synthetic yield. Compared to their all-thiophene-backbone counterpart PT-E, two new polymers feature larger conjugated plane, resulting in higher hole mobility for them, especially a value up to ≈10-4 cm2 V-1 ·s for PF2 with longer alkyl side chain. Meanwhile, PF1 and PF2 exhibit larger dielectric constant and deeper electronic energy level versus PT-E. Benefiting from the better physicochemical properties, the efficiencies of PF1- and PF2-based devices are improved by ≈16.7% and ≈71.3% relative to that PT-E-based devices, respectively. Furthermore, the optimized PF2-based devices with introducing PC71 BM as the third component deliver a higher efficiency of 12.40%. The work not only indicates that furan-3-carboxylate is a simple yet efficient building block for constructing non-fused-ring polymers but also provides a promising electron donor PF2 for the low-cost production of OSCs.


Subject(s)
Solar Energy , Electrons , Polymers/chemistry , Sunlight , Thiophenes/chemistry
5.
Phys Chem Chem Phys ; 24(37): 22599-22604, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36102859

ABSTRACT

The crystallography of the low-temperature phases (ß'') for shape memory alloys (NbRu and TaRu) has been debated for decades. Though a P2/m monoclinic structure has been proposed for the ß'' phase, the proposed structure is not able to completely represent the measured diffraction data. In this work, the crystallography of the ß'' phase was investigated by first-principles calculations. We showed that the previously reported P2/m monoclinic structure was lattice unstable due to the presence of the soft phonon mode. A P21/m monoclinic structure was derived from the P2/m monoclinic structure by displacing its atoms according to the eigenvector of the soft phonon mode at the Γ point. The P21/m and the P2/m monoclinic structures are structurally similar, but the former one is energetically and structurally more favorable than the latter one. We concluded that the ß'' phase preferred to crystallize in the P21/m monoclinic structure rather than the previously reported P2/m monoclinic structure. Our results offer guidance for the experimental determination of the crystallography of the ß'' phase for NbRu and TaRu.

6.
Chemistry ; 25(16): 4040-4046, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30615246

ABSTRACT

A new route for obtaining N-doped carbon nanosheets through an in situ solid-state thermal organic-inorganic polymerization and carbonization method, with glucose and melamine as precursors, due to different temperature intervals for glucose or melamine polymerization, is reported. At a current rate of 0.2 C, as a cathode for a lithium-sulfur cell, the N-doped carbon nanosheet/sulfur hybrid delivers a high capacity of 1313 and 722 mA h g-1 in the 1st and 200th cycles, respectively; these values are over 40 % higher than that of cells with glucose-derived carbon nanosheets.

7.
Adv Mater ; 36(9): e2306373, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37703387

ABSTRACT

Organic solar cells (OSCs) exhibit complex charge dynamics, which are closely correlated with the dielectric constant (ɛr ) of photovoltaic materials. In this work, a series of novel conjugated copolymers based on benzo[1,2-b:4,5-b']difuran (BDF) and benzotriazole (BTz) is designed and synthesized, which differ by the nature of π-bridge from one another. The PBDF-TF-BTz with asymmetric furan and thiophene π-bridge demonstrates a larger ɛr of 4.22 than PBDF-dT-BTz with symmetric thiophene π-bridge (3.15) and PBDF-dF-BTz with symmetric furan π-bridge (3.90). The PBDF-TF-BTz also offers more favorable molecular packing and appropriate miscibility with non-fullerene acceptor Y6 than its counterparts. The corresponding PBDF-TF-BTz:Y6 OSCs display efficient exciton dissociation, fast charge transport and collection, and reduced charge recombination, eventually leading to a power conversion efficiency of 17.01%. When introducing a fullerene derivative (PCBO-12) as a third component, the PBDF-TF-BTz:Y6:PCBO-12 OSCs yield a remarkable FF of 80.11% with a high efficiency of 18.10%, the highest value among all reported BDF-polymer-based OSCs. This work provides an effective approach to developing high-permittivity photovoltaic materials, showcasing PBDF-TF-BTz as a promising polymer donor for constructing high-performance OSCs.

8.
J Colloid Interface Sci ; 641: 105-112, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36924540

ABSTRACT

Carbon-based all-inorganic perovskite solar cells (C-IPSCs) are stable, upscalable and have low CO2-footprint to fabricate. However, they are inefficient in converting light to electricity due to poor hole extraction at perovskite/carbon interface. Here we enable an efficient hole extraction in C-IPSCs with the aid of inorganic p-type nickel oxide nanoparticles (NiOx-NPs) at the interface and in carbon. By tailoring the work function (WF) of carbon, and reducing the energy-level misalignment at the perovskite/carbon interface, NiOx-NPs enable efficient hole transfer, reduce charge recombination and minimize energy loss. As a result, we report 15.01% and 11.02% efficiencies for CsPbI2Br and CsPbIBr2 C-IPSCs, respectively, with a high open-circuit voltage of ∼1.3 V. Unencapsulated interface-modified CsPbI2Br devices maintained 92.8% of their initial efficiency at ambient conditions after nearly 2,000 h; and 94.6% after heating at 60 °C for 170 h. This strategy to tailor carbon interface with perovskite offers an important knob in improving C-IPSCs performance.

9.
ACS Appl Mater Interfaces ; 14(38): 43576-43585, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36102874

ABSTRACT

Charge carrier events across organic electronics are ubiquitous, and the derived optimization plays a crucial effect on improving the performance of organic electronics. Herein, a two-dimensional material (Ti3C2Tx) is incorporated into titanium dioxide (TiO2) to impart the Ti3C2Tx/TiO2 hybrid film enriched hydroxy group distribution, defect-negligible surface, upshifted work function, and enhanced conductivity yet electron mobility versus the pristine TiO2 film. Therefore, intensified photon-harvesting ability, reduced charge carrier recombination, and efficient charge carrier collection are realized for dye-sensitized solar cells (DSSCs) based on the Ti3C2Tx/TiO2 hybrid photoanode relative to control ones. Consequently, the modified DSSCs based on Z907 deliver superior efficiencies of 10.39 and 29.68% under 100 mW/cm2 illumination and ∼1.9 mW/cm2 dim light, respectively, being the highest values of Z907-based DSSCs. However, control devices only obtain lower efficiencies of 8.06 and 23.91% when undergoing the abovementioned illumination. On the other hand, the self-powered homologous photodetectors with the hybrid film as an electron-transporting layer present enhanced detectivity (1.69 × 1011 Jones) and a shortened responsivity of 0.26 s versus that of control ones (1.39 × 1011 Jones and 0.35 s). Our work implies that the Ti3C2Tx/TiO2 hybrid film features high potential for improving the performance of organic electronics for its effect of holistically optimizing charge carrier dynamics.

10.
ACS Appl Mater Interfaces ; 14(34): 38963-38971, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35979625

ABSTRACT

Carbon-based all-inorganic CsPbIxBr3-x perovskite solar cells offer high stability against heat and humidity and a suitable band gap for tandem and semitransparent photovoltaics. In CsPbIxBr3-x perovskite films, the defects at grain boundaries (GBs) cause charge trapping, reducing the efficiency of the cell. Electronic deactivation of GB has been a conventional strategy to suppress the trapping, but at the cost of charge carrier transport through the boundaries. Here, we turn the GBs into benign charge transport pathways with the aid of bipolar charge transport semiconductors, namely, Ti3C2TX (MXene) and Spiro-OMeTAD, respectively. Thanks to the synergistic effects of both n- and p-type transport media, the charge transport is improved and balanced at the GBs. As a result, the cells achieve an efficiency of 12.7%, the highest among all low-temperature-processed carbon-based inorganic perovskite solar cells. Benign GBs also lead to enhanced light and aging stabilities. Our work demonstrates a proof-of-concept strategy of benign electronic modulation of GBs for solution-processed perovskite solar cells.

11.
Front Chem ; 9: 655025, 2021.
Article in English | MEDLINE | ID: mdl-34746089

ABSTRACT

In this work, the Co-Ni basic carbonate nanowires were in-situ grown on carbon nanotube (CNT) network through a facile chemical bath deposition method, which could be further converted into active hydroxide via cyclic voltammetry strategy. A series of carbonate nanowire/nanotube with different Co/Ni ratio revealed the different growth status of the nanowires on CNT network. The nanostructures of the as-synthesized samples were examined via powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) techniques. The Co/Ni ratio of the carbonate largely affected the size of the nanowires, that the low Co/Ni ratio was beneficial for thin nanowire formation and the nanowires loading on CNT network. Subsequently, the electrochemical performance of the Co-Ni basic hydroxides was studied in a three-electrode test system. The nanowires with low Co/Ni ratio 1/2 can form nanowire array on individual CNTs, which exhibited better electrochemical capacitive performance than the composite network with high Co/Ni ratio nanowires after electrochemical activation. The addition of Co enhanced the rate performance of the hydroxide/CNT, especially improved the long cycle stability largely compared to the rate performance of pure Ni converted hydroxide/CNT composite film reported by our previous research. This result is valuable for the design of inorganic electrochemical active composites based on conductive networks for energy conversion/storage applications.

12.
ACS Appl Mater Interfaces ; 13(46): 55349-55357, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34762401

ABSTRACT

CsPbIxBry-based all-inorganic perovskite materials are a potential candidate for stable semitransparent and tandem structured photovoltaic devices. However, poor film (morphological and crystalline) quality and interfacial recombination lead consequently to a decline in the photoelectric conversion performance of the applied solar cells. In this work, we incorporated PbS quantum dots (QDs) at the interface of electron transporting layer (ETL) SnO2 and perovskite to modulate the crystallization of CsPbIBr2 and the interfacial charge dynamics in carbon-based solar cells. The as-casted PbS QDs behave as seeds for lattice-matching the epitaxial growth of pinhole-free CsPbIBr2 films. The modified films with reduced defect density exhibit facilitated carrier transfer and suppressed charge recombination at the ETL/perovskite interface, contributing to an enhanced device efficiency from 7.00 to 9.09% and increased reproducibility and ambient stability. This strategic method of QD-assisted lattice-matched epitaxial growth is promising to prepare high-quality perovskite films for efficient perovskite solar cells.

13.
Nanoscale Res Lett ; 15(1): 179, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32955683

ABSTRACT

A ternary and composite MoIn2S4@CNTs counter electrode (CE) with a hedgehog ball structure was synthesized by using a facile one-step hydrothermal method. The composite MoIn2S4@CNTs film possesses large specific surface area through N2 adsorption-desorption isotherms test, which is advantageous to adsorb more electrolyte and provide larger active contact area for the electrode. In addition, the composite MoIn2S4@CNTs CE exhibits low charge transfer resistance and fine electrocatalytic ability made from a series of electrochemical tests including cyclic voltammetry, electrochemical impedance, and Tafel curves. Under optimal conditions, the DSSC based on the MoIn2S4@CNTs-2 composite CE achieves an impressive power conversion efficiency as high as 8.38%, which remarkably exceeds that of the DSSCs with the MoIn2S4 CE (7.44%) and the Pt electrode (8.01%). The current work provides a simplified preparation process for the DSSCs.

14.
ACS Appl Mater Interfaces ; 12(35): 39063-39073, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32805927

ABSTRACT

The development of highly crystalline perovskite films with large crystal grains and few surface defects is attractive to obtain high-performance perovskite solar cells (PSCs) with good device stability. Herein, we simultaneously improve the power conversion efficiency (PCE) and humid stability of the CH3NH3PbI3 (CH3NH3 = MA) device by incorporating small organic molecule IT-4F into the perovskite film and using a buffer layer of PFN-Br. The presence of IT-4F in the perovskite film can successfully improve crystallinity and enhance the grain size, leading to reduced trap states and longer lifetime of the charge carrier, and make the perovskite film hydrophobic. Meanwhile, as a buffer layer, PFN-Br can accelerate the separation of excitons and promote the transfer process of electrons from the active layer to the cathode. As a consequence, the PSCs exhibit a remarkably improved PCE of 20.55% with reduced device hysteresis. Moreover, the moisture-resistive film-based devices retain about 80% of their initial efficiency after 30 days of storage in relative humidity of 10-30% without encapsulation.

15.
ACS Appl Mater Interfaces ; 12(47): 52603-52614, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33174414

ABSTRACT

Modulating and optimizing the diverse parameters of photocatalysts synergistically as well as exerting these advantages fully in photocatalytic reactions are crucial for the sufficient utilization of solar energy but still face various challenges. Herein, a novel and facile urea- and KOH-assisted thermal polymerization (UKATP) strategy is first developed for the preparation of defect-modified thin-layered and porous g-C3N4 (DTLP-CN), wherein the thickness of g-C3N4 was dramatically decreased, and cyano groups, nitrogen vacancies, and mesopores were simultaneously introduced into g-C3N4. Importantly, the roles of thickness, pores, and defects can be targetedly modulated and optimized by changing the mass ratio of urea, KOH, and melamine. This can remarkably increase the specific area, improve the light-harvesting capability, and enhance separation efficiency of photoexcited charge carriers, strengthening the mass transfer in g-C3N4. Consequently, the photocatalytic hydrogen evolution efficiency of the DTLP-CN (1.557 mmol h-1 g-1, λ > 420 nm) was significantly improved more than 48.5 times with the highest average apparent quantum yield (AQY) of 18.5% and reached as high as 0.82% at 500 nm. This work provides an effective strategy for synergistically regulating the properties of g-C3N4, and opens a new horizon to design g-C3N4-based catalysts for highly efficient solar-energy conversion.

16.
Nanoscale Res Lett ; 14(1): 66, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30806819

ABSTRACT

Molybdenum disulfide (MoS2) and polyaniline (PANI) electrodes were decorated with multi-walled carbon nanotubes (MWCNTs) on the basis of a facial hydrothermal and in situ polymerization methods and served in the asymmetric supercapacitor (ASC). The MoS2 and MWCNTs with a mole ratio of 1:1 in MoS2|MWCNTs electrode exhibited better electrochemical properties through extensive electrochemical studies, in terms of the highest specific capacitance of 255.8 F/g at 1 A/g, low internal resistance, and notable electrochemical stability with retention of the initial specific capacitance at 91.6% after 1000 cycles. The as-prepared PANI|MWCNTs electrode also exhibited good specific capacitance of 267.5 F/g at 1 A/g and remained 97.9% capacitance retention after 1000 cycles. Then, the ASC with MoS2|MWCNTs and PANI|MWCNTs composite electrodes were assembled with polyvinyl alcohol (PVA)-Na2SO4 gel electrolyte, which displayed good electrochemical performance with the specific capacitance of 138.1 F/g at 1 A/g, and remained the energy density of 15.09 Wh/kg at a high power density of 2217.95 W/kg. This result shows that this ASC device possesses excellent electrochemical properties of high energy density and power output and thus showing a potential application prospect.

17.
ACS Appl Mater Interfaces ; 11(3): 3299-3307, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30589524

ABSTRACT

Although ternary polymer solar cells have more potential in realizing a high power conversion efficiency than the binary counterparts, the mechanism of exciton separation and charge transport in such complicated ternary systems is far from being understood. Herein, we focus on this issue and give a clear view on the detailed roles of the ternary components contributing to the device performance, through utilizing the technique of pump-probe photoconductivity spectroscopy combined with transient photoluminescence spectroscopy, for the first time for ternary polymer solar cells. The ternary photovoltaic devices are based on PBDB-T:ITIC:PC71BM and present a dramatic improvement in efficiency in comparison to that of the binary counterparts. Systematic investigation reveals that the excitons generated in ITIC could be separated at the interface of PBDB-T:ITIC rather than ITIC:PC71BM with holes injecting to PBDB-T. These holes together with those generated in PBDB-T contribute to the photocurrent of the devices. The aggregation of holes in PBDB-T would also weaken the exciton generation herein, and the electron injection to PC71BM and ITIC would also be influenced. The key role of PC71BM in the ternary devices is accepting the electrons from PBDB-T and transporting them to the cathode with a higher rate than that of ITIC. Thus, this article is of importance in constructing high-efficiency ternary polymer solar cells.

18.
Adv Mater ; 31(14): e1807435, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30740780

ABSTRACT

Organic-inorganic hybrid perovskite solar cells (PSCs) have seen a rapid rise in power conversion efficiencies in recent years; however, they still suffer from interfacial recombination and charge extraction losses at interfaces between the perovskite absorber and the charge-transport layers. Here, in situ back-contact passivation (BCP) that reduces interfacial and extraction losses between the perovskite absorber and the hole transport layer (HTL) is reported. A thin layer of nondoped semiconducting polymer at the perovskite/HTL interface is introduced and it is shown that the use of the semiconductor polymer permits-in contrast with previously studied insulator-based passivants-the use of a relatively thick passivating layer. It is shown that a flat-band alignment between the perovskite and polymer passivation layers achieves a high photovoltage and fill factor: the resultant BCP enables a photovoltage of 1.15 V and a fill factor of 83% in 1.53 eV bandgap PSCs, leading to an efficiency of 21.6% in planar solar cells.

19.
Nanoscale Res Lett ; 13(1): 216, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30030648

ABSTRACT

We report a new method as UV treatment of low-temperature processed to obtain tin oxide (SnO2) electron transport layers (ETLs). The results show that the high quality of ETLs can be produced by controlling the thickness of the film while it is treated by UV. The thickness is dependent on the concentration of SnO2. Moreover, the conductivity and transmittance of the layer are dependent on the quality of the film. A planar perovskite solar cell is prepared based on this UV-treated film. The temperatures involved in the preparation process are less than 90 °C. An optimal power conversion efficiency of 14.36% is obtained at the concentration of SnO2 of 20%. This method of UV treatment SnO2 film at low temperature is suitable for the low-cost commercialized application.

20.
Nat Commun ; 9(1): 4003, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30275457

ABSTRACT

As crystalline silicon solar cells approach in efficiency their theoretical limit, strategies are being developed to achieve efficient infrared energy harvesting to augment silicon using solar photons from beyond its 1100 nm absorption edge. Herein we report a strategy that uses multi-bandgap lead sulfide colloidal quantum dot (CQD) ensembles to maximize short-circuit current and open-circuit voltage simultaneously. We engineer the density of states to achieve simultaneously a large quasi-Fermi level splitting and a tailored optical response that matches the infrared solar spectrum. We shape the density of states by selectively introducing larger-bandgap CQDs within a smaller-bandgap CQD population, achieving a 40 meV increase in open-circuit voltage. The near-unity internal quantum efficiency in the optimized multi-bandgap CQD ensemble yielded a maximized photocurrent of 3.7 ± 0.2 mA cm-2. This provides a record for silicon-filtered power conversion efficiency equal to one power point, a 25% (relative) improvement compared to the best previously-reported results.

SELECTION OF CITATIONS
SEARCH DETAIL