Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.647
Filter
Add more filters

Publication year range
1.
Cell ; 186(16): 3333-3349.e27, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37490916

ABSTRACT

The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such "multipronged" T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies.


Subject(s)
Antigens, Neoplasm , Neoplasms , Proteomics , Receptors, Antigen, T-Cell , Antigens, Neoplasm/metabolism , Epitopes , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism
2.
Cell ; 185(16): 2936-2951.e19, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931021

ABSTRACT

We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HLA-A Antigens , Histocompatibility Antigens Class I , Humans
3.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33275901

ABSTRACT

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Subject(s)
Protein Kinases/metabolism , Proteolysis , Proteome/metabolism , Adult , Cell Line , Databases, Protein , Female , Humans , Male , Middle Aged , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolism , Young Adult
4.
Cell ; 150(6): 1135-46, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980977

ABSTRACT

DNA methylation at the 5 position of cytosine (5-mC) is a key epigenetic mark that is critical for various biological and pathological processes. 5-mC can be converted to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) family of DNA hydroxylases. Here, we report that "loss of 5-hmC" is an epigenetic hallmark of melanoma, with diagnostic and prognostic implications. Genome-wide mapping of 5-hmC reveals loss of the 5-hmC landscape in the melanoma epigenome. We show that downregulation of isocitrate dehydrogenase 2 (IDH2) and TET family enzymes is likely one of the mechanisms underlying 5-hmC loss in melanoma. Rebuilding the 5-hmC landscape in melanoma cells by reintroducing active TET2 or IDH2 suppresses melanoma growth and increases tumor-free survival in animal models. Thus, our study reveals a critical function of 5-hmC in melanoma development and directly links the IDH and TET activity-dependent epigenetic pathway to 5-hmC-mediated suppression of melanoma progression, suggesting a new strategy for epigenetic cancer therapy.


Subject(s)
Cytosine/analogs & derivatives , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Nevus/genetics , 5-Methylcytosine/analogs & derivatives , Cytosine/metabolism , DNA-Binding Proteins/genetics , Dioxygenases , Genome-Wide Association Study , Humans , Isocitrate Dehydrogenase/genetics , Melanocytes/metabolism , Melanoma/pathology , Nevus/pathology , Proto-Oncogene Proteins/genetics
5.
Nature ; 591(7849): 317-321, 2021 03.
Article in English | MEDLINE | ID: mdl-33505026

ABSTRACT

METTL3 (methyltransferase-like 3) mediates the N6-methyladenosine (m6A) methylation of mRNA, which affects the stability of mRNA and its translation into protein1. METTL3 also binds chromatin2-4, but the role of METTL3 and m6A methylation in chromatin is not fully understood. Here we show that METTL3 regulates mouse embryonic stem-cell heterochromatin, the integrity of which is critical for silencing retroviral elements and for mammalian development5. METTL3 predominantly localizes to the intracisternal A particle (IAP)-type family of endogenous retroviruses. Knockout of Mettl3 impairs the deposition of multiple heterochromatin marks onto METTL3-targeted IAPs, and upregulates IAP transcription, suggesting that METTL3 is important for the integrity of IAP heterochromatin. We provide further evidence that RNA transcripts derived from METTL3-bound IAPs are associated with chromatin and are m6A-methylated. These m6A-marked transcripts are bound by the m6A reader YTHDC1, which interacts with METTL3 and in turn promotes the association of METTL3 with chromatin. METTL3 also interacts physically with the histone 3 lysine 9 (H3K9) tri-methyltransferase SETDB1 and its cofactor TRIM28, and is important for their localization to IAPs. Our findings demonstrate that METTL3-catalysed m6A modification of RNA is important for the integrity of IAP heterochromatin in mouse embryonic stem cells, revealing a mechanism of heterochromatin regulation in mammals.


Subject(s)
Chromatin Assembly and Disassembly , Heterochromatin/genetics , Heterochromatin/metabolism , Methyltransferases/metabolism , Mouse Embryonic Stem Cells/metabolism , Animals , Endogenous Retroviruses/genetics , Gene Expression Regulation , Genes, Intracisternal A-Particle/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Mice , Tripartite Motif-Containing Protein 28/metabolism
6.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38758698

ABSTRACT

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Subject(s)
Common Cold , Immunity, Innate , Interferons , Nasal Mucosa , SARS-CoV-2 , Signal Transduction , Humans , Nasal Mucosa/virology , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Interferons/metabolism , Interferons/immunology , Common Cold/immunology , Common Cold/virology , Signal Transduction/immunology , SARS-CoV-2/immunology , Virus Replication , Rhinovirus/immunology , Coronavirus 229E, Human/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epithelial Cells/virology , Epithelial Cells/immunology , Epithelial Cells/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Coronavirus NL63, Human/immunology
7.
Proc Natl Acad Sci U S A ; 121(35): e2321633121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39172784

ABSTRACT

α-synuclein (α-syn) assembles into structurally distinct fibril polymorphs seen in different synucleinopathies, such as Parkinson's disease and multiple system atrophy. Targeting these unique fibril structures using chemical ligands holds diagnostic significance for different disease subtypes. However, the molecular mechanisms governing small molecules interacting with different fibril polymorphs remain unclear. Here, we investigated the interactions of small molecules belonging to four distinct scaffolds, with different α-syn fibril polymorphs. Using cryo-electron microscopy, we determined the structures of these molecules when bound to the fibrils formed by E46K mutant α-syn and compared them to those bound with wild-type α-syn fibrils. Notably, we observed that these ligands exhibit remarkable binding adaptability, as they engage distinct binding sites across different fibril polymorphs. While the molecular scaffold primarily steered the binding locations and geometries on specific sites, the conjugated functional groups further refined this adaptable binding by fine-tuning the geometries and binding sites. Overall, our finding elucidates the adaptability of small molecules binding to different fibril structures, which sheds light on the diagnostic tracer and drug developments tailored to specific pathological fibril polymorphs.


Subject(s)
Amyloid , Cryoelectron Microscopy , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Amyloid/metabolism , Amyloid/chemistry , Ligands , Humans , Binding Sites , Protein Binding , Parkinson Disease/metabolism , Mutation
8.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38568967

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Endoribonucleases/metabolism , Signal Transduction , Antiviral Agents
9.
Nature ; 587(7832): 133-138, 2020 11.
Article in English | MEDLINE | ID: mdl-32968279

ABSTRACT

Cell death in human diseases is often a consequence of disrupted cellular homeostasis. If cell death is prevented without restoring cellular homeostasis, it may lead to a persistent dysfunctional and pathological state. Although mechanisms of cell death have been thoroughly investigated1-3, it remains unclear how homeostasis can be restored after inhibition of cell death. Here we identify TRADD4-6, an adaptor protein, as a direct regulator of both cellular homeostasis and apoptosis. TRADD modulates cellular homeostasis by inhibiting K63-linked ubiquitination of beclin 1 mediated by TRAF2, cIAP1 and cIAP2, thereby reducing autophagy. TRADD deficiency inhibits RIPK1-dependent extrinsic apoptosis and proteasomal stress-induced intrinsic apoptosis. We also show that the small molecules ICCB-19 and Apt-1 bind to a pocket on the N-terminal TRAF2-binding domain of TRADD (TRADD-N), which interacts with the C-terminal domain (TRADD-C) and TRAF2 to modulate the ubiquitination of RIPK1 and beclin 1. Inhibition of TRADD by ICCB-19 or Apt-1 blocks apoptosis and restores cellular homeostasis by activating autophagy in cells with accumulated mutant tau, α-synuclein, or huntingtin. Treatment with Apt-1 restored proteostasis and inhibited cell death in a mouse model of proteinopathy induced by mutant tau(P301S). We conclude that pharmacological targeting of TRADD may represent a promising strategy for inhibiting cell death and restoring homeostasis to treat human diseases.


Subject(s)
Apoptosis/drug effects , Homeostasis/drug effects , TNF Receptor-Associated Death Domain Protein/antagonists & inhibitors , TNF Receptor-Associated Death Domain Protein/metabolism , Animals , Autophagy/drug effects , Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Beclin-1/chemistry , Beclin-1/metabolism , Bortezomib/antagonists & inhibitors , Bortezomib/pharmacology , Cell Line , Humans , Huntingtin Protein/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Male , Mice , Models, Molecular , Neurofibrillary Tangles/metabolism , Proteome/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , TNF Receptor-Associated Death Domain Protein/chemistry , TNF Receptor-Associated Death Domain Protein/deficiency , TNF Receptor-Associated Factor 2/metabolism , Ubiquitination , alpha-Synuclein/metabolism , tau Proteins/metabolism
10.
Mol Cell ; 69(6): 1028-1038.e6, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29547716

ABSTRACT

N6-methyladenosine (m6A) is an abundant modification in eukaryotic mRNA, regulating mRNA dynamics by influencing mRNA stability, splicing, export, and translation. However, the precise m6A regulating machinery still remains incompletely understood. Here we demonstrate that ZC3H13, a zinc-finger protein, plays an important role in modulating RNA m6A methylation in the nucleus. We show that knockdown of Zc3h13 in mouse embryonic stem cell significantly decreases global m6A level on mRNA. Upon Zc3h13 knockdown, a great majority of WTAP, Virilizer, and Hakai translocate to the cytoplasm, suggesting that Zc3h13 is required for nuclear localization of the Zc3h13-WTAP-Virilizer-Hakai complex, which is important for RNA m6A methylation. Finally, Zc3h13 depletion, as does WTAP, Virilizer, or Hakai, impairs self-renewal and triggers mESC differentiation. Taken together, our findings demonstrate that Zc3h13 plays a critical role in anchoring WTAP, Virilizer, and Hakai in the nucleus to facilitate m6A methylation and to regulate mESC self-renewal.


Subject(s)
Adenosine/analogs & derivatives , Cell Nucleus/metabolism , Cell Proliferation , Cell Self Renewal , Mouse Embryonic Stem Cells/metabolism , Nuclear Proteins/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , 3' Untranslated Regions , Active Transport, Cell Nucleus , Adenosine/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Cell Differentiation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Methylation , Mice , Nuclear Proteins/genetics , RNA Splicing Factors , RNA Stability , RNA, Messenger/genetics , RNA-Binding Proteins , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
11.
Proc Natl Acad Sci U S A ; 120(15): e2218083120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37023127

ABSTRACT

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary human nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal [Severe acute respiratory syndrome (SARS)-CoV-2 and Middle East respiratory syndrome-CoV (MERS-CoV)] and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures, though replication is differentially modulated by temperature. Infections conducted at 33 °C vs. 37 °C (reflective of temperatures in the upper and lower airway, respectively) revealed that replication of both seasonal HCoVs (HCoV-NL63 and -229E) is significantly attenuated at 37 °C. In contrast, SARS-CoV-2 and MERS-CoV replicate at both temperatures, though SARS-CoV-2 replication is enhanced at 33 °C late in infection. These HCoVs also diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV receptor availability as well as replication. MERS-CoV receptor DPP4 expression increases with IL-13 treatment, whereas ACE2, the receptor used by SARS-CoV-2 and HCoV-NL63, is down-regulated. IL-13 treatment enhances MERS-CoV and HCoV-229E replication but reduces that of SARS-CoV-2 and HCoV-NL63, reflecting the impact of IL-13 on HCoV receptor availability. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.


Subject(s)
COVID-19 , Coronaviridae , Coronavirus 229E, Human , Humans , Interleukin-13/metabolism , Seasons , SARS-CoV-2 , Epithelial Cells
12.
Proc Natl Acad Sci U S A ; 120(39): e2308079120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37733743

ABSTRACT

TAK1 is a key modulator of both NF-κB signaling and RIPK1. In TNF signaling pathway, activation of TAK1 directly mediates the phosphorylation of IKK complex and RIPK1. In a search for small molecule activators of RIPK1-mediated necroptosis, we found R406/R788, two small molecule analogs that could promote sustained activation of TAK1. Treatment with R406 sensitized cells to TNF-mediated necroptosis and RIPK1-dependent apoptosis by promoting sustained RIPK1 activation. Using click chemistry and multiple biochemical binding assays, we showed that treatment with R406 promotes the activation of TAK1 by directly binding to TAK1, independent of its original target Syk kinase. Treatment with R406 promoted the ubiquitination of TAK1 and the interaction of activated TAK1 with ubiquitinated RIPK1. Finally, we showed that R406/R788 could promote the cancer-killing activities of TRAIL in vitro and in mouse models. Our studies demonstrate the possibility of developing small molecule TAK1 activators to potentiate the effect of TRAIL as anticancer therapies.


Subject(s)
Apoptosis , Neoplasms , Animals , Mice , Cell Death , Cytosol , Neoplasms/drug therapy , Neoplasms/genetics , Ubiquitination
13.
J Biol Chem ; 300(3): 105734, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336294

ABSTRACT

Numerous putative glycosyltransferases (GTs) have been identified using bioinformatic approaches. However, demonstrating the activity of these GTs remains a challenge. Here, we describe the development of a rapid in vitro GT-array screening platform for activity of GTs. GT-arrays are generated by cell-free in vitro protein synthesis and binding using microplates precoated with a N-terminal Halo- or a C-terminal GST-tagged GT-encoding plasmid DNA and a capture antibody. These arrays are then used for screening of transferase activities and the reactions are monitored by a luminescence GLO assay. The products formed by these reactions can be analyzed directly from the microplates by mass spectrometry. Using this platform, a total of 280 assays were performed to screen 22 putative fucosyltransferases (FUTs) from family GT37 (seven from Arabidopsis and 15 from rice) for activity toward five acceptors: non-fucosylated tamarind xyloglucan (TXyG), arabinotriose (Ara3), non-fucosylated rhamnogalacturonan I (RG-I), and RG-II from the mur1-1 Arabidopsis mutant, and the celery RG-II monomer lacking Arap and MeFuc of chain B and l-Gal of chain A. Our screen showed that AtFUT2, AtFUT5, and AtFUT10 have activity toward RG-I, while AtFUT8 was active on RG-II. Five rice OsFUTs have XyG-FUT activity and four rice OsFUTs have activity toward Ara3. None of the putative OsFUTs were active on the RG-I and RG-II. However, promiscuity toward acceptors was observed for several FUTs. These findings extend our knowledge of cell wall polysaccharide fucosylation in plants. We believe that in vitro GT-array platform provides a valuable tool for cell wall biochemistry and other research fields.


Subject(s)
Enzyme Assays , Fucosyltransferases , Glycosyltransferases , Plant Proteins , Apium/enzymology , Apium/genetics , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/chemistry , Cell Wall/enzymology , Cell Wall/metabolism , Enzyme Assays/instrumentation , Enzyme Assays/methods , Fucosyltransferases/analysis , Fucosyltransferases/classification , Fucosyltransferases/metabolism , Glycosyltransferases/analysis , Glycosyltransferases/metabolism , Mass Spectrometry , Oryza/enzymology , Plant Proteins/analysis , Plant Proteins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism
14.
J Virol ; 98(6): e0053124, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38709106

ABSTRACT

Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE: The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Camelids, New World , Coronavirus Infections , Coronavirus OC43, Human , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Viral Load , Animals , Single-Domain Antibodies/immunology , Mice , Antibodies, Neutralizing/immunology , Coronavirus OC43, Human/immunology , Humans , Antibodies, Viral/immunology , Camelids, New World/immunology , Spike Glycoprotein, Coronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Female , Epitopes/immunology , Crystallography, X-Ray , Virus Internalization/drug effects , Disease Models, Animal , Mice, Inbred BALB C
15.
Hepatology ; 80(2): 346-362, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38377458

ABSTRACT

BACKGROUND AND AIMS: Apoptosis Signal-regulating Kinase 1 (ASK1) is activated by various pathological stimuli and induces cell apoptosis through downstream p38 activation. We studied the effect of pharmacological ASK1 inhibition on cirrhosis and its sequelae using comprehensive preclinical in vivo and in vitro systems. APPROACH AND RESULTS: Short-term (4-6 wk) and long-term (24-44 wk) ASK1 inhibition using small molecule GS-444217 was tested in thioacetamide-induced and BALB/c. Mdr2-/- murine models of cirrhosis and HCC, and in vitro using primary hepatocyte cell death assays. Short-term GS-444217 therapy in both models strongly reduced phosphorylated p38, hepatocyte death, and fibrosis by up to 50%. Profibrogenic release of mitochondrial DAMP mitochondrial deoxyribonucleic acid from dying hepatocytes was blocked by ASK1 or p38 inhibition. Long-term (24 wk) therapy in BALBc.Mdr2 - / - model resulted in a moderate 25% reduction in bridging fibrosis, but not in net collagen deposition. Despite this, the development of cirrhosis was effectively prevented, with strongly reduced p21 + hepatocyte staining (by 72%), serum ammonia levels (by 46%), and portal pressure (average 6.07 vs. 8.53 mm Hg in controls). Extended ASK1 inhibition for 44 wk in aged BALB/c. Mdr2-/- mice resulted in markedly reduced tumor number and size by ~50% compared to the control group. CONCLUSIONS: ASK1 inhibition suppresses the profibrogenic release of mitochondrial deoxyribonucleic acid from dying hepatocytes in a p38-dependent manner and protects from liver fibrosis. Long-term ASK1 targeting resulted in diminished net antifibrotic effect, but the progression to liver cirrhosis and cancer in BALBc/ Mdr2- / - mice was effectively inhibited. These data support the clinical evaluation of ASK1 inhibitors in fibrotic liver diseases.


Subject(s)
Disease Progression , Hepatocytes , Liver Cirrhosis , Liver Neoplasms , MAP Kinase Kinase Kinase 5 , Mice, Inbred BALB C , p38 Mitogen-Activated Protein Kinases , Animals , MAP Kinase Kinase Kinase 5/antagonists & inhibitors , MAP Kinase Kinase Kinase 5/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Male , Thioacetamide/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal
16.
Nat Chem Biol ; 19(10): 1235-1245, 2023 10.
Article in English | MEDLINE | ID: mdl-37400537

ABSTRACT

Amyloid fibril is an important pharmaceutical target for diagnostic and therapeutic treatment of neurodegenerative diseases. However, rational design of chemical compounds that interact with amyloid fibrils is unachievable due to the lack of mechanistic understanding of the ligand-fibril interaction. Here we used cryoelectron microscopy to survey the amyloid fibril-binding mechanism of a series of compounds including classic dyes, (pre)clinical imaging tracers and newly identified binders from high-throughput screening. We obtained clear densities of several compounds in complex with an α-synuclein fibril. These structures unveil the basic mechanism of the ligand-fibril interaction, which exhibits remarkable difference from the canonical ligand-protein interaction. In addition, we discovered a druggable pocket that is also conserved in the ex vivo α-synuclein fibrils from multiple system atrophy. Collectively, these findings expand our knowledge of protein-ligand interaction in the amyloid fibril state, which will enable rational design of amyloid binders in a medicinally beneficial way.


Subject(s)
Amyloid , alpha-Synuclein , alpha-Synuclein/chemistry , Cryoelectron Microscopy , Amyloid/chemistry , Ligands
17.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35594398

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Subject(s)
COVID-19 , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Coronavirus Infections/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/metabolism , Humans , Immunity, Innate , Lung/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nasal Mucosa , SARS-CoV-2/pathogenicity , Uridylate-Specific Endoribonucleases
18.
J Am Chem Soc ; 146(34): 23649-23662, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39162361

ABSTRACT

The conversion of thermodynamically inert CO2 into methanol holds immense promise for addressing the pressing environmental and energy challenges of our time. This article offers a succinct overview of the development of single-atom catalysts (SACs) for thermochemical hydrogenation of CO2 to methanol, encompassing research advancements, advantages, potential hurdles, and other essential aspects related to these catalysts. Our aim of this work is to provide a deeper understanding of the intricacies of the catalytic structures of the single-atom sites and their unique structure-activity relationships in catalyzing the conversion of CO2 to methanol. We also present insights into the optimal design of SACs, drawing from our own research and those of fellow scientists. This research thrust is poised to contribute significantly to the development of next-generation SACs, which are crucial in advancing the sustainable production of methanol from CO2.

19.
J Am Chem Soc ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39327912

ABSTRACT

The amyloid fibrils of α-synuclein (α-syn) are crucial in the pathology of Parkinson's disease (PD), with the intrinsically disordered region (IDR) of its C-terminal playing a key role in interacting with receptors like LAG3 and RAGE, facilitating pathological neuronal spread and inflammation. In this study, we identified Givinostat (GS) as an effective inhibitor that disrupts the interaction of α-syn fibrils with receptors such as LAG3 and RAGE through high-throughput screening. By exploring the structure-activity relationship and optimizing GS, we developed several lead compounds, including GSD-16-24. Utilizing solution-state and solid-state NMR, along with cryo-EM techniques, we demonstrated that GSD-16-24 binds directly to the C-terminal IDR of α-syn monomer and fibril, preventing the fibril from binding to the receptors. Furthermore, GSD-16-24 significantly inhibits the association of α-syn fibrils with membrane receptors, thereby reducing neuronal propagation and pro-inflammatory effects of α-syn fibrils. Our findings introduce a novel approach to mitigate the pathological effects of α-syn fibrils by targeting their IDR with small molecules, offering potential leads for the development of clinical drugs to treat PD.

20.
J Hepatol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089631

ABSTRACT

BACKGROUND & AIMS: Cholangiocarcinoma (CCA) is a dreaded complication of primary sclerosing cholangitis (PSC) that is difficult to diagnose and associated with high mortality. Lack of animal models of CCA recapitulating the hepatic microenvironment of sclerosing cholangitis has hindered the development of novel treatments. Herein, we sought to develop a mouse model of PSC-associated CCA. METHODS: Ten-week-old Mdr2-/- mice with congenital PSC-like disease, and healthy wild-type littermates were subjected to either modified retrograde biliary instillation or hydrodynamic tail vein injection of a sleeping beauty transposon-transposase plasmid system with activated AKT (myr-AKT) and Yap (YapS127A) proto-oncogenes (SB AKT/YAP1). The role of TGFß was interrogated via ALK5 inhibitor (SB-525334) administration. Tumor phenotype, burden and desmoplastic reaction were analyzed histologically and via RNA sequencing. RESULTS: While SB AKT/YAP1 plasmids administered via retrograde biliary injection caused tumors in Mdr2-/-, only 26.67% (4/15) of these tumors were CCA. Alternatively, hydrodynamic tail vein injection of SB AKT/YAP1 resulted in robust tumorigenesis in all fibrotic Mdr2-/- mice with high CCA burden compared to healthy mice. Tumors phenotypically resembled human CCA, expressed multiple CCA (but not hepatocellular carcinoma) markers, and exhibited a profound desmoplastic reaction. RNA sequencing analysis revealed profound transcriptional changes in CCA evolving in a PSC-like context, with specific alterations in multiple immune pathways. Pharmacological TGFß inhibition led to enhanced immune cell tumor infiltration, reduced tumor burden and suppressed desmoplastic collagen accumulation compared to placebo. CONCLUSION: We established a new high-fidelity cholangiocarcinoma model in mice, termed SB CCA.Mdr2-/-, which recapitulates the increased susceptibility to CCA in the setting of biliary injury and fibrosis observed in PSC. Through transcriptomics and pharmacological studies, we show dysregulation of multiple immune pathways and TGFß signaling as potential drivers of CCA in a PSC-like microenvironment. IMPACT AND IMPLICATIONS: Animal models for primary sclerosing cholangitis (PSC)-related cholangiocarcinoma (PSC-CCA) are lacking. Thus, we have developed and characterized a new mouse model of PSC-CCA, termed SB CCA.Mdr2-/-, which features reliable tumor induction on a PSC-like background of biliary injury and fibrosis. Global gene expression alterations were identified and standardized tools, including automated whole slide image analysis methodology for tumor burden and feature analysis, were established to enable systematic research into PSC-CCA biology and formal preclinical drug testing.

SELECTION OF CITATIONS
SEARCH DETAIL