Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Lipid Res ; 64(9): 100426, 2023 09.
Article in English | MEDLINE | ID: mdl-37586604

ABSTRACT

In the past 20 years, PCSK9 has been shown to play a pivotal role in LDL cholesterol metabolism and cardiovascular health by inducing the lysosomal degradation of the LDL receptor. PCSK9 was discovered by the cloning of genes up-regulated after apoptosis induced by serum deprivation in primary cerebellar neurons, but despite its initial identification in the brain, the precise role of PCSK9 in the nervous system remains to be clearly established. The present article is a comprehensive review of studies published or in print before July 2023 that have investigated the expression pattern of PCSK9, its effects on lipid metabolism as well as its putative roles specifically in the central and peripheral nervous systems, with a special focus on cerebrovascular and neurodegenerative diseases.


Subject(s)
Nervous System , Proprotein Convertase 9 , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Cholesterol, LDL , Receptors, LDL/genetics , Receptors, LDL/metabolism , Brain/metabolism
2.
JACC Adv ; 2(7): 100557, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38939496

ABSTRACT

Background: In the SPARCL (Stroke Prevention by Aggressive Reduction in Cholesterol levels) trial, atorvastatin (80 mg/d) was compared to placebo in patients with recent stroke or transient ischemic attack (TIA) and no known coronary artery disease. Objectives: This study aimed to assess the contribution of lipoprotein(a) [Lp(a)] to subsequent cerebrovascular and cardiovascular events in stroke/TIA survivors. Methods: Lp(a) levels and apolipoprotein(a) [apo(a)] isoform size were determined by liquid-chromatography mass spectrometry in samples collected at baseline from 2,814 SPARCL participants (1,418 randomized to atorvastatin and 1,396 to placebo). Within each treatment arm, patients in the highest quartile (≥84.0 nmol/L) were compared with those in the lowest quartiles of Lp(a) concentrations. Patients in the lowest quartile (≤25.9 Kringle IV domains) of apo(a) isoform sizes were compared with those in the highest quartiles. Multivariable-adjusted HRs were calculated using Cox proportional regression models. Results: There was no significant association between Lp(a) concentrations or apo(a) isoform sizes and the risk of recurrent stroke, the primary outcome of SPARCL, or cerebrovascular events in patients randomized to atorvastatin or placebo. In contrast, in patients randomized to atorvastatin, elevated Lp(a) concentrations and short apo(a) isoforms were positively and independently associated with an increased risk of coronary events (HR: 1.607 [95% CI: 1.007-2.563] and HR: 2.052 [95% CI: 1.303-3.232]). No such association was found in patients randomized to placebo (HR: 1.025 [95% CI: 0.675-1.555] and HR: 1.097 [95% CI: 0.735-1.637]). Conclusions: Lp(a) contributes to the residual coronary artery disease risk of statin-treated stroke/TIA survivors, paving the way for use of therapies targeting Lp(a) in this population with stroke. (Lipitor In The Prevention Of Stroke, For Patients Who Have Had A Previous Stroke [SPARCL]; NCT00147602).

SELECTION OF CITATIONS
SEARCH DETAIL