Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Chem Biol ; 16(9): 1034, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32694868

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Chem Biol ; 15(12): 1183-1190, 2019 12.
Article in English | MEDLINE | ID: mdl-31740825

ABSTRACT

Here we introduce Z-lock, an optogenetic approach for reversible, light-controlled steric inhibition of protein active sites. The light oxygen voltage (LOV) domain and Zdk, a small protein that binds LOV selectively in the dark, are appended to the protein of interest where they sterically block the active site. Irradiation causes LOV to change conformation and release Zdk, exposing the active site. Computer-assisted protein design was used to optimize linkers and Zdk-LOV affinity, for both effective binding in the dark, and effective light-induced release of the intramolecular interaction. Z-lock cofilin was shown to have actin severing ability in vitro, and in living cancer cells it produced protrusions and invadopodia. An active fragment of the tubulin acetylase αTAT was similarly modified and shown to acetylate tubulin on irradiation.


Subject(s)
Acetylesterase/chemistry , Actin Depolymerizing Factors/chemistry , Optogenetics , Tubulin/chemistry , Acetylation
3.
J Chem Inf Model ; 58(5): 895-901, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29659276

ABSTRACT

We have developed a set of protocols in the molecular modeling program Rosetta for performing requirement-driven protein design. First, the user specifies a set of structural features that need to be present in the designed protein. These requirements can be general (e.g., "create a protein with five helices"), or they can be very specific and require the correct placement of a set of amino acids to bind a ligand. Next, a large set of protein models are generated that satisfy the design requirements. The models are built using a method that we recently introduced into Rosetta, called SEWING, that rapidly assembles novel protein backbones by combining pieces of naturally occurring proteins. In the last step of the process, rotamer-based sequence optimization and backbone refinement are performed with Rosetta, and a variety of quality metrics are used to pick sequences for experimental characterization. Here we describe the input files and user options needed to run SEWING and perform requirement-driven design and provide detailed instructions for two specific applications of the process: the design of new structural elements at a protein-protein interface and the design of ligand binding sites.


Subject(s)
Drug Design , Models, Molecular , Proteins/chemistry , Binding Sites , Ligands , Protein Structure, Secondary , Proteins/metabolism , Software
4.
Bioinformatics ; 30(8): 1138-1145, 2014 04 15.
Article in English | MEDLINE | ID: mdl-24371152

ABSTRACT

MOTIVATION: Accuracy in protein design requires a fine-grained rotamer search, multiple backbone conformations, and a detailed energy function, creating a burden in runtime and memory requirements. A design task may be split into manageable pieces in both three-dimensional space and in the rotamer search space to produce small, fast jobs that are easily distributed. However, these jobs must overlap, presenting a problem in resolving conflicting solutions in the overlap regions. RESULTS: Piecemeal design, in which the design space is split into overlapping regions and rotamer search spaces, accelerates the design process whether jobs are run in series or in parallel. Large jobs that cannot fit in memory were made possible by splitting. Accepting the consensus amino acid selection in conflict regions led to non-optimal choices. Instead, conflicts were resolved using a second pass, in which the split regions were re-combined and designed as one, producing results that were closer to optimal with a minimal increase in runtime over the consensus strategy. Splitting the search space at the rotamer level instead of at the amino acid level further improved the efficiency by reducing the search space in the second pass. AVAILABILITY AND IMPLEMENTATION: Programs for splitting protein design expressions are available at www.bioinfo.rpi.edu/tools/piecemeal.html CONTACT: bystrc@rpi.edu Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology/methods , Protein Engineering/methods , Proteins/chemistry , Algorithms , Amino Acids/chemistry , Models, Molecular , Protein Conformation
5.
Protein Sci ; 31(7): e4368, 2022 07.
Article in English | MEDLINE | ID: mdl-35762713

ABSTRACT

Using the molecular modeling program Rosetta, we designed a de novo protein, called SEWN0.1, which binds the heterotrimeric G protein Gαq. The design is helical, well-folded, and primarily monomeric in solution at a concentration of 10 µM. However, when we solved the crystal structure of SEWN0.1 at 1.9 Å, we observed a dimer in a conformation incompatible with binding Gαq . Unintentionally, we had designed a protein that adopts alternate conformations depending on its oligomeric state. Recently, there has been tremendous progress in the field of protein structure prediction as new methods in artificial intelligence have been used to predict structures with high accuracy. We were curious if the structure prediction method AlphaFold could predict the structure of SEWN0.1 and if the prediction depended on oligomeric state. When AlphaFold was used to predict the structure of monomeric SEWN0.1, it produced a model that resembles the Rosetta design model and is compatible with binding Gαq , but when used to predict the structure of a dimer, it predicted a conformation that closely resembles the SEWN0.1 crystal structure. AlphaFold's ability to predict multiple conformations for a single protein sequence should be useful for engineering protein switches.


Subject(s)
Artificial Intelligence , Proteins , Amino Acid Sequence , Models, Molecular , Protein Conformation , Proteins/chemistry
6.
Curr Opin Struct Biol ; 66: 170-177, 2021 02.
Article in English | MEDLINE | ID: mdl-33276237

ABSTRACT

The grand challenge of protein design is a general method for producing a polypeptide with arbitrary functionality, conformation, and biochemical properties. To that end, a wide variety of methods have been developed for the improvement of native proteins, the design of ideal proteins de novo, and the redesign of suboptimal proteins with better-performing substructures. These methods employ informatic comparisons of function-structure-sequence relationships as well as knowledge-based evaluation of protein properties to narrow the immense protein sequence search space down to an enumerable and often manually evaluable set of structures that meet specified criteria. While arbitrary manipulation of protein-protein interfaces and molecular catalysis remains an unsolved problem, and no protein shape or behavior manipulation algorithm is universally applicable, the promising results thus far are a strong indicator that a general approach to the arbitrary manipulation of polypeptides is within reach.


Subject(s)
Protein Folding , Proteins , Algorithms , Amino Acid Sequence , Catalysis , Protein Conformation , Proteins/genetics
7.
Nat Commun ; 12(1): 6947, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845212

ABSTRACT

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.


Subject(s)
Macromolecular Substances/chemistry , Molecular Docking Simulation , Proteins/chemistry , Software/standards , Benchmarking , Binding Sites , Humans , Ligands , Macromolecular Substances/metabolism , Protein Binding , Proteins/metabolism , Reproducibility of Results
8.
J Mol Biol ; 432(4): 805-814, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31887287

ABSTRACT

Light-sensitive proteins can be used to perturb signaling networks in living cells and animals with high spatiotemporal resolution. We recently engineered a protein heterodimer that dissociates when irradiated with blue light and demonstrated that by fusing each half of the dimer to termini of a protein that it is possible to selectively block binding surfaces on the protein when in the dark. On activation with light, the dimer dissociates and exposes the binding surface, allowing the protein to bind its partner. Critical to the success of this system, called Z-lock, is that the linkers connecting the dimer components to the termini are engineered so that the dimer forms over the appropriate binding surface. Here, we develop and test a protocol in the Rosetta molecular modeling program for designing linkers for Z-lock. We show that the protocol can predict the most effective linker sets for three different light-sensitive switches, including a newly designed switch that binds the Rho-family GTPase Cdc42 on stimulation with blue light. This protocol represents a generalized computational approach to placing a wide variety of proteins under optogenetic control with Z-lock.


Subject(s)
Computational Biology/methods , Light , Binding Sites , Optogenetics/methods , Protein Binding/radiation effects , Protein Structure, Secondary , Signal Transduction/radiation effects , Spatio-Temporal Analysis , cdc42 GTP-Binding Protein/chemistry , cdc42 GTP-Binding Protein/metabolism
9.
Virol Rep ; 1-2: 2-8, 2014.
Article in English | MEDLINE | ID: mdl-25664240

ABSTRACT

After a 75-year absence from Florida, substantial local transmission of dengue virus (DENV) occurred in Key West, Monroe County, Florida in 2009 and continued in 2010. The outbreak culminated in 85 reported cases. In 2011 and 2012, only isolated cases of local DENV transmission were reported in Florida, none were reported in Key West. In 2013, a new outbreak occurred, but this time in Martin County about 275 miles North of Key West with 22 reported cases. As the Key West and Martin County outbreaks involved DENV serotype 1 (DENV-1), we wanted to investigate whether the same strain or a different strain of DENV was responsible for the outbreaks. In this study, we report the sequence and phylogenetic analysis of the E generegion from a patient diagnosed with dengue in Martin County. Our results indicate that the 2013 Martin County DENV-1 strain is distinct from the 2009-2010 Key West DENV-1 and that it is most closely related to viruses from a recent expansion of South American DENV-1 strains into the Caribbean. We conclude that the 2013 Martin County outbreak was the result of a new introduction of DENV-1 in Florida.

SELECTION OF CITATIONS
SEARCH DETAIL