Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Publication year range
1.
Cell ; 166(1): 88-101, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27293190

ABSTRACT

Antibodies to DNA and chromatin drive autoimmunity in systemic lupus erythematosus (SLE). Null mutations and hypomorphic variants of the secreted deoxyribonuclease DNASE1L3 are linked to familial and sporadic SLE, respectively. We report that DNASE1L3-deficient mice rapidly develop autoantibodies to DNA and chromatin, followed by an SLE-like disease. Circulating DNASE1L3 is produced by dendritic cells and macrophages, and its levels inversely correlate with anti-DNA antibody response. DNASE1L3 is uniquely capable of digesting chromatin in microparticles released from apoptotic cells. Accordingly, DNASE1L3-deficient mice and human patients have elevated DNA levels in plasma, particularly in circulating microparticles. Murine and human autoantibody clones and serum antibodies from human SLE patients bind to DNASE1L3-sensitive chromatin on the surface of microparticles. Thus, extracellular microparticle-associated chromatin is a potential self-antigen normally digested by circulating DNASE1L3. The loss of this tolerance mechanism can contribute to SLE, and its restoration may represent a therapeutic opportunity in the disease.


Subject(s)
Autoantibodies/immunology , Cell-Derived Microparticles/chemistry , Chromatin/immunology , DNA/immunology , Endodeoxyribonucleases/genetics , Lupus Erythematosus, Systemic/immunology , Animals , Cell-Derived Microparticles/metabolism , Disease Models, Animal , Endodeoxyribonucleases/deficiency , Endodeoxyribonucleases/metabolism , Humans , Jurkat Cells , Lupus Erythematosus, Systemic/enzymology , Lupus Erythematosus, Systemic/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout
2.
Hum Mol Genet ; 32(1): 46-54, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35913761

ABSTRACT

Glutaminase deficiency has recently been associated with ataxia and developmental delay due to repeat expansions in the 5'UTR of the glutaminase (GLS) gene. Patients with the described GLS repeat expansion may indeed remain undiagnosed due to the rarity of this variant, the challenge of its detection and the recency of its discovery. In this study, we combined advanced bioinformatics screening of ~3000 genomes and ~1500 exomes with optical genome mapping and long-read sequencing for confirmation studies. We identified two GLS families, previously intensely and unsuccessfully analyzed. One family carries an unusual and complex structural change involving a homozygous repeat expansion nested within a quadruplication event in the 5'UTR of GLS. Glutaminase deficiency and its metabolic consequences were validated by in-depth biochemical analysis. The identified GLS patients showed progressive early-onset ataxia, cognitive deficits, pyramidal tract damage and optic atrophy, thus demonstrating susceptibility of several specific neuron populations to glutaminase deficiency. This large-scale screening study demonstrates the ability of bioinformatics analysis-validated by latest state-of-the-art technologies (optical genome mapping and long-read sequencing)-to effectively flag complex repeat expansions using short-read datasets and thus facilitate diagnosis of ultra-rare disorders.


Subject(s)
Glutaminase , Humans , 5' Untranslated Regions , Ataxia/diagnosis , Ataxia/genetics , Glutaminase/genetics
3.
Proc Natl Acad Sci U S A ; 119(26): e2204084119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35727972

ABSTRACT

Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.


Subject(s)
Hearing Loss, Sensorineural , Receptor, Notch2 , Receptors, Cell Surface , Animals , Hearing Loss, Sensorineural/genetics , Humans , Loss of Function Mutation , Mice , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Receptors, Cell Surface/genetics , Stereocilia/metabolism
4.
Hum Genomics ; 17(1): 103, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996878

ABSTRACT

BACKGROUND: We analyzed the genetic causes of sensorineural hearing loss in racial and ethnic minorities of South Florida by reviewing demographic, phenotypic, and genetic data on 136 patients presenting to the Hereditary Hearing Loss Clinic at the University of Miami. In our retrospective chart review, of these patients, half self-identified as Hispanic, and the self-identified racial distribution was 115 (86%) White, 15 (11%) Black, and 6 (4%) Asian. Our analysis helps to reduce the gap in understanding the prevalence, impact, and genetic factors related to hearing loss among diverse populations. RESULTS: The causative gene variant or variants were identified in 54 (40%) patients, with no significant difference in the molecular diagnostic rate between Hispanics and Non-Hispanics. However, the total solve rate based on race was 40%, 47%, and 17% in Whites, Blacks, and Asians, respectively. In Non-Hispanic Whites, 16 different variants were identified in 13 genes, with GJB2 (32%), MYO7A (11%), and SLC26A4 (11%) being the most frequently implicated genes. In White Hispanics, 34 variants were identified in 20 genes, with GJB2 (22%), MYO7A (7%), and STRC-CATSPER2 (7%) being the most common. In the Non-Hispanic Black cohort, the gene distribution was evenly dispersed, with 11 variants occurring in 7 genes, and no variant was identified in 3 Hispanic Black probands. For the Asian cohort, only one gene variant was found out of 6 patients. CONCLUSION: This study demonstrates that the diagnostic rate of genetic studies in hearing loss varies according to race in South Florida, with more heterogeneity in racial and ethnic minorities. Further studies to delineate deafness gene variants in underrepresented populations, such as African Americans/Blacks from Hispanic groups, are much needed to reduce racial and ethnic disparities in genetic diagnoses.


Subject(s)
Hearing Loss, Sensorineural , Humans , Asian/genetics , Black or African American/genetics , DNA/genetics , Florida/epidemiology , Hearing Loss, Sensorineural/epidemiology , Hearing Loss, Sensorineural/genetics , Hispanic or Latino/genetics , Intercellular Signaling Peptides and Proteins , Retrospective Studies , White/genetics
5.
Am J Med Genet A ; 194(4): e63481, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37984424

ABSTRACT

Chanarin-Dorfman syndrome is an autosomal recessively inherited disorder characterized by ichthyosis, sensorineural hearing loss, and hepatic dysfunction. We report on a 60-year-old female of Venezuelan descent who presented with congenital ichthyosis, progressive sensorineural hearing loss, and liver cirrhosis. We identify a heterozygous copy number deletion involving exon 1 and another heterozygous deletion involving exon 3 of the ABHD5 gene. Exon 2 is preserved. Both deletions were confirmed with RT-PCR. RNAseq from peripheral blood shows a reduction of ABHD5 expression overall and an absence of exon 3 expression, confirming the deleterious effects of the identified deletions. We present exonic deletions as a potentially common type of ABHD5 variation.


Subject(s)
Hearing Loss, Sensorineural , Ichthyosiform Erythroderma, Congenital , Ichthyosis , Lipid Metabolism, Inborn Errors , Muscular Diseases , Female , Humans , Middle Aged , Ichthyosiform Erythroderma, Congenital/complications , Ichthyosiform Erythroderma, Congenital/diagnosis , Ichthyosiform Erythroderma, Congenital/genetics , Lipid Metabolism, Inborn Errors/genetics , Muscular Diseases/genetics , Ichthyosis/complications , Ichthyosis/diagnosis , Ichthyosis/genetics , Liver Cirrhosis , Hearing Loss, Sensorineural/complications , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , 1-Acylglycerol-3-Phosphate O-Acyltransferase/genetics
6.
Am J Med Genet A ; 194(6): e63556, 2024 06.
Article in English | MEDLINE | ID: mdl-38348595

ABSTRACT

Phenotypic features of a hereditary connective tissue disorder, including craniofacial characteristics, hyperextensible skin, joint laxity, kyphoscoliosis, arachnodactyly, inguinal hernia, and diverticulosis associated with biallelic pathogenic variants in EFEMP1 have been previously described in four patients. Genome sequencing on a proband and her mother with comparable phenotypic features revealed that both patients were heterozygous for a stop-gain variant c.1084C>T (p.Arg362*). Complementary RNA-seq on fibroblasts revealed significantly reduced levels of mutant EFEMP1 transcript. Considering the absence of other molecular explanations, we extrapolated that EFEMP1 could be the cause of the patient's phenotypes. Furthermore, nonsense-mediated decay was demonstrated for the mutant allele as the principal mechanism for decreased levels of EFEMP1 mRNA. We provide strong clinical and genetic evidence for the haploinsufficiency of EFEMP1 due to nonsense-medicated decay to cause severe kyphoscoliosis, generalized hypermobility of joints, high and narrow arched palate, and potentially severe diverticulosis. To the best of our knowledge, this is the first report of an autosomal dominant EFEMP1-associated hereditary connective tissue disorder and therefore expands the phenotypic spectrum of EFEMP1 related disorders.


Subject(s)
Connective Tissue Diseases , Extracellular Matrix Proteins , Haploinsufficiency , Marfan Syndrome , Phenotype , Humans , Haploinsufficiency/genetics , Female , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Extracellular Matrix Proteins/genetics , Connective Tissue Diseases/genetics , Connective Tissue Diseases/pathology , Pedigree , Mutation/genetics , Nonsense Mediated mRNA Decay/genetics , Male , Adult , Alleles , Genetic Predisposition to Disease , Child
7.
Am J Med Genet A ; 194(6): e63563, 2024 06.
Article in English | MEDLINE | ID: mdl-38352997

ABSTRACT

Autosomal dominant sensorineural hearing loss (ADSNHL) is a genetically heterogeneous disorder caused by pathogenic variants in various genes, including MYH14. However, the interpretation of pathogenicity for MYH14 variants remains a challenge due to incomplete penetrance and the lack of functional studies and large families. In this study, we performed exome sequencing in six unrelated families with ADSNHL and identified five MYH14 variants, including three novel variants. Two of the novel variants, c.571G > C (p.Asp191His) and c.571G > A (p.Asp191Asn), were classified as likely pathogenic using ACMG and Hearing Loss Expert panel guidelines. In silico modeling demonstrated that these variants, along with p.Gly1794Arg, can alter protein stability and interactions among neighboring molecules. Our findings suggest that MYH14 causative variants may be more contributory and emphasize the importance of considering this gene in patients with nonsyndromic mainly post-lingual severe form of hearing loss. However, further functional studies are needed to confirm the pathogenicity of these variants.


Subject(s)
Exome Sequencing , Hearing Loss, Sensorineural , Myosin Heavy Chains , Myosin Type II , Pedigree , Humans , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Female , Male , Myosin Heavy Chains/genetics , Adult , Mutation/genetics , Genetic Predisposition to Disease , Child , Genes, Dominant , Middle Aged , Adolescent
8.
Brain ; 146(7): 3003-3013, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36729635

ABSTRACT

There are few causes of treatable neurodevelopmental diseases described to date. Branched-chain ketoacid dehydrogenase kinase (BCKDK) deficiency causes branched-chain amino acid (BCAA) depletion and is linked to a neurodevelopmental disorder characterized by autism, intellectual disability and microcephaly. We report the largest cohort of patients studied, broadening the phenotypic and genotypic spectrum. Moreover, this is the first study to present newborn screening findings and mid-term clinical outcome. In this cross-sectional study, patients with a diagnosis of BCKDK deficiency were recruited via investigators' practices through a MetabERN initiative. Clinical, biochemical and genetic data were collected. Dried blood spot (DBS) newborn screening (NBS) amino acid profiles were retrieved from collaborating centres and compared to a healthy newborn reference population. Twenty-one patients with BCKDK mutations were included from 13 families. Patients were diagnosed between 8 months and 16 years (mean: 5.8 years, 43% female). At diagnosis, BCAA levels (leucine, valine and isoleucine) were below reference values in plasma and in CSF. All patients had global neurodevelopmental delay; 18/21 had gross motor function (GMF) impairment with GMF III or worse in 5/18, 16/16 intellectual disability, 17/17 language impairment, 12/17 autism spectrum disorder, 9/21 epilepsy, 12/15 clumsiness, 3/21 had sensorineural hearing loss and 4/20 feeding difficulties. No microcephaly was observed at birth, but 17/20 developed microcephaly during follow-up. Regression was reported in six patients. Movement disorder was observed in 3/21 patients: hyperkinetic movements (1), truncal ataxia (1) and dystonia (2). After treatment with a high-protein diet (≥ 2 g/kg/day) and BCAA supplementation (100-250 mg/kg/day), plasma BCAA increased significantly (P < 0.001), motor functions and head circumference stabilized/improved in 13/13 and in 11/15 patients, respectively. Among cases with follow-up data, none of the three patients starting treatment before 2 years of age developed autism at follow-up. The patient with the earliest age of treatment initiation (8 months) showed normal development at 3 years of age. NBS in DBS identified BCAA levels significantly lower than those of the normal population. This work highlights the potential benefits of dietetic treatment, in particular early introduction of BCAA. Therefore, it is of utmost importance to increase awareness about this treatable disease and consider it as a candidate for early detection by NBS programmes.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Microcephaly , Infant, Newborn , Humans , Female , Infant , Male , Intellectual Disability/genetics , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Neonatal Screening , Cross-Sectional Studies , Glia Maturation Factor , Amino Acids, Branched-Chain/metabolism , Microcephaly/genetics
9.
J Craniofac Surg ; 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360960

ABSTRACT

OBJECTIVE: The infraorbital canal (IOC) houses critical structures like the infraorbital artery, vein, and nerve, and its atypical location within the maxillary sinus could pose risks during surgical procedures, making it crucial to understand its prevalence and distribution. The study aims to investigate the localization and frequency of the IOC within the maxillary sinus. METHODS: This retrospective study analyzed computed tomography (CT) images from 1000 randomly selected patients (500 males, 500 females) aged 18 to 65 years who underwent paranasal region imaging at Istanbul Medipol University Medipol Mega University Hospital between 2015 and 2020. Exclusion criteria included major pathologies, prior surgeries, and poor image quality. The study focused on evaluating the localization of the IOC and its presence within the maxillary sinus, using coronal CT sections. RESULTS: The IOC was found within the maxillary sinus in 8% of cases (44 males, 36 females). This variation was bilateral in 34 cases and unilateral in 46 cases, with no statistically significant relationship between sex and the occurrence or type of variation. The study's findings align with previous research, which reported similar prevalence rates for this anatomical variation. CONCLUSION: The study confirms that the IOC is located within the maxillary sinus in a significant percentage of cases, emphasizing the importance of preoperative CT evaluation to prevent potential complications during maxillary sinus surgeries. These findings highlight the clinical relevance of considering individual anatomical differences in the localization of the IOC.

10.
J Craniofac Surg ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264179

ABSTRACT

OBJECTIVES: This study aims the analysis of the journal metrics of Journal of Craniofacial Surgery based on 2024 Journal Citation Reports (JCR) data. METHODS: In the Journal Citation Reports 2024, shared by Clarivate Analytics on June 20, 2024, the journal metrics of the Journal of Craniofacial Surgery were examined in detail. RESULTS: According to the reports published by Clarivate Analytics in 2024, the journal's impact factor in 2023 was determined as 1.0 and the impact factor excluding self-citations was calculated as 0.8. These values show that the impact factor of the journal has increased in recent years. Also, it is seen that the Journal of Craniofacial Surgery, which has been in the fourth quartile (Q4) among the journals in the "Surgery" category for the last 10 years, has risen to the third quartile (Q3) this year. CONCLUSIONS: The increase in the impact factor and ranking of the Journal of Craniofacial Surgery shows that the journal has strengthened its position in the scientific field and is moving toward higher levels. However, it is suggested that other metrics should be taken into consideration in addition to the impact factor.

11.
J Craniofac Surg ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283085

ABSTRACT

OBJECTIVES: This study aims to conduct a Scopus-based bibliometric analysis of the studies published in the Journal of Craniofacial Surgery, which has a very important place in its field. METHODS: In this bibliometric study, all articles in the Journal of Craniofacial Surgery in the Scopus database on 7 July 2024 were listed. The information of the listed articles was exported in CSV file format. When exporting these articles, the citation information, bibliographic information, abstract and keywords, funding details, and other information options were all selected. These exported CSV data were analyzed with VOSviewer software (version 1.6.18). RESULTS: The bibliometric analysis of the Journal of Craniofacial Surgery from 1990 to 2023 included 15,271 articles listed in the Scopus database. The majority (84.7%) of these articles were original studies. The top 5 countries with the highest number of publications were the United States (4004 articles), Turkey (2124 articles), China (2111 articles), South Korea (1597 articles), and Italy (1109 articles). CONCLUSION: This comprehensive bibliometric analysis demonstrates the Journal of Craniofacial Surgery's increasing prominence and impact in the field over the years. The diverse international contributions highlight the journal's role in fostering global collaboration and knowledge dissemination in craniofacial and maxillofacial research. While the use of a single database (Scopus) is a limitation, the study provides a detailed overview of the journal's scholarly contributions, influential authors, and publication trends. These findings underscore the journal's pivotal position in advancing craniofacial surgery research and education.

12.
J Craniofac Surg ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861337

ABSTRACT

OBJECTIVE: This study aimed to evaluate the utility and efficacy of ChatGPT in addressing questions related to thyroid surgery, taking into account accuracy, readability, and relevance. METHODS: A simulated physician-patient consultation on thyroidectomy surgery was conducted by posing 21 hypothetical questions to ChatGPT. Responses were evaluated using the DISCERN score by 3 independent ear, nose and throat specialists. Readability measures including Flesch Reading Ease), Flesch-Kincaid Grade Level, Gunning Fog Index, Simple Measure of Gobbledygook, Coleman-Liau Index, and Automated Readability Index were also applied. RESULTS: The majority of ChatGPT responses were rated fair or above using the DISCERN system, with an average score of 45.44 ± 11.24. However, the readability scores were consistently higher than the recommended grade 6 level, indicating the information may not be easily comprehensible to the general public. CONCLUSION: While ChatGPT exhibits potential in answering patient queries related to thyroid surgery, its current formulation is not yet optimally tailored for patient comprehension. Further refinements are necessary for its efficient application in the medical domain.

13.
J Hum Genet ; 68(10): 657-669, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37217689

ABSTRACT

Hearing loss (HL) is a common heterogeneous trait that involves variants in more than 200 genes. In this study, we utilized exome (ES) and genome sequencing (GS) to effectively identify the genetic cause of presumably non-syndromic HL in 322 families from South and West Asia and Latin America. Biallelic GJB2 variants were identified in 58 probands at the time of enrollment these probands were excluded. In addition, upon review of phenotypic findings, 38/322 probands were excluded based on syndromic findings at the time of ascertainment and no further evaluation was performed on those samples. We performed ES as a primary diagnostic tool on one or two affected individuals from 212/226 families. Via ES we detected a total of 78 variants in 30 genes and showed their co-segregation with HL in 71 affected families. Most of the variants were frameshift or missense and affected individuals were either homozygous or compound heterozygous in their respective families. We employed GS as a primary test on a subset of 14 families and a secondary tool on 22 families which were unsolved by ES. Although the cumulative detection rate of causal variants by ES and GS is 40% (89/226), GS alone has led to a molecular diagnosis in 7 of 14 families as the primary tool and 5 of 22 families as the secondary test. GS successfully identified variants present in deep intronic or complex regions not detectable by ES.


Subject(s)
Deafness , Hearing Loss , Humans , Deafness/genetics , Hearing Loss/genetics , Hearing Loss/diagnosis , Phenotype , Homozygote , Mutation , Pedigree
14.
Am J Med Genet A ; 191(4): 1044-1049, 2023 04.
Article in English | MEDLINE | ID: mdl-36628575

ABSTRACT

Phenotypic features of KBG syndrome include craniofacial anomalies, short stature, cognitive disability and behavioral findings. The syndrome is caused by heterozygous pathogenic single nucleotide variants and indels in ANKRD11, or a heterozygous deletion of 16q24.3 that includes ANKRD11. We performed genome sequencing on a patient with clinical manifestations of KBG syndrome including distinct craniofacial features as well as a history of mild intellectual disability and attention-deficit hyperactivity disorder. This led to the identification of a 43 kb intragenic deletion of ANKRD11 affecting the first noncoding exon while leaving the coding regions intact. Review of the literature shows that this is the smallest 5' deletion affecting only the noncoding exons of ANKRD11. Real-time polymerase chain reaction demonstrated that the copy number variant was not present in either of the proband's parents, suggesting it occurred de novo. RNA expression analysis demonstrated significantly decreased transcript abundance compared to controls. This provides new evidence for haploinsufficiency as a mechanism of disease in KBG syndrome.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Tooth Abnormalities , Humans , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Repressor Proteins/genetics , Chromosome Deletion , Transcription Factors/genetics , Phenotype
15.
Am J Med Genet A ; 191(7): 1911-1916, 2023 07.
Article in English | MEDLINE | ID: mdl-36987712

ABSTRACT

Recurrent de novo missense variants in H4 histone genes have recently been associated with a novel neurodevelopmental syndrome that is characterized by intellectual disability and developmental delay as well as more variable findings that include short stature, microcephaly, and facial dysmorphisms. A 4-year-old male with autism, developmental delay, microcephaly, and a happy demeanor underwent evaluation through the Undiagnosed Disease Network. He was clinically suspected to have Angelman syndrome; however, molecular testing was negative. Genome sequencing identified the H4 histone gene variant H4C5 NM_003545.4: c.295T>C, p.Tyr99His, which parental testing confirmed to be de novo. The variant met criteria for a likely pathogenic classification and is one of the seven known disease-causing missense variants in H4C5. A comparison of our proband's findings to the initial description of the H4-associated neurodevelopmental syndrome demonstrates that his phenotype closely matches the spectrum of those reported among the 29 affected individuals. As such, this report corroborates the delineation of neurodevelopmental syndrome caused by de novo missense H4 gene variants. Moreover, it suggests that cases of clinically suspected Angelman syndrome without molecular confirmation should undergo exome or genome sequencing, as novel neurodevelopmental syndromes with phenotypes overlapping with Angelman continue to be discovered.


Subject(s)
Angelman Syndrome , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Male , Humans , Angelman Syndrome/diagnosis , Angelman Syndrome/genetics , Microcephaly/genetics , Histones/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Phenotype , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/genetics , Mutation, Missense/genetics
16.
Eur J Orthop Surg Traumatol ; 33(3): 629-637, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35852612

ABSTRACT

PURPOSE: Long bone defects due to fractures resulting from high-energy trauma, infections and tumor resections are problems that orthopedic surgeons commonly face. We investigated the effects of a titanium mesh cage on bone healing with an induced membrane technique. METHODS: Three groups, each composed of eight rabbits, were formed. Extraarticular diaphyseal bone defects were created. Femora of the first group were fixed with an empty titanium mesh cage and two K-wires. After formation of the defect, polymethylmethacrylate was inserted and fixed with a K-wire in the second group. At the third week, the cement was removed, a sterilized cancellous graft-filled titanium mesh cage was placed into the defect, and the membrane that was previously formed over the cement was placed on the cage and repaired. In the third group, sterilized cancellous grafts were filled into the titanium mesh cage, and the titanium mesh cage was fitted into the bone defect area. RESULTS: At the end of the third month, all subjects were killed. Radiological data revealed that the healing of the bone in the second and third groups was significantly better than that in the first group. There was no difference between the second and third groups. A histological evaluation of the healing status, such as fibrous tissue, cartilage tissue and mature or immature bone formation, was performed. Histological healing in the second and third groups was also significantly better than that in the first group. CONCLUSION: We concluded that the combination of membrane-induced bone healing and graft-filled titanium mesh cages expedites osteogenesis in extraarticular bone defects.


Subject(s)
Fractures, Bone , Titanium , Rabbits , Animals , Surgical Mesh , Prostheses and Implants , Femur/surgery , Femur/pathology , Fractures, Bone/surgery
17.
Am J Med Genet A ; 188(4): 1307-1310, 2022 04.
Article in English | MEDLINE | ID: mdl-34995019

ABSTRACT

Auriculocondylar syndrome (ARCND) is characterized by a distinguished feature of question mark ears and a variation of other minor and major malformations. Monoallelic or biallelic PLCB4 variants have been reported in a subset of affected individuals, referred to as ARCND2. We report on a 3-year-old female with ARCND who presented at birth with question mark ears, micrognathia, and bilateral choanal stenosis that was characterized by difficulty in breathing. She was found to be heterozygous for a novel PLCB4 variant, p.Glu358Gly. Respiratory distress is rare in autosomal dominant ARCND2 and choanal stenosis has not been reported. Our study expands the clinical phenotype of ARCND by adding choanal stenosis as a finding and suggests that PLCB4 play a role in the development of choanal structures.


Subject(s)
Choanal Atresia , GTP-Binding Protein alpha Subunits, Gi-Go , Choanal Atresia/diagnosis , Choanal Atresia/genetics , Constriction, Pathologic/genetics , Ear/abnormalities , Ear Diseases , Female , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Humans , Mutation , Pedigree , Phospholipase C beta/genetics
18.
Proc Natl Acad Sci U S A ; 116(4): 1347-1352, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30610177

ABSTRACT

We have identified a GRAP variant (c.311A>T; p.Gln104Leu) cosegregating with autosomal recessive nonsyndromic deafness in two unrelated families. GRAP encodes a member of the highly conserved growth factor receptor-bound protein 2 (GRB2)/Sem-5/drk family of proteins, which are involved in Ras signaling; however, the function of the growth factor receptor-bound protein 2 (GRB2)-related adaptor protein (GRAP) in the auditory system is not known. Here, we show that, in mouse, Grap is expressed in the inner ear and the protein localizes to the neuronal fibers innervating cochlear and utricular auditory hair cells. Downstream of receptor kinase (drk), the Drosophila homolog of human GRAP, is expressed in Johnston's organ (JO), the fly hearing organ, and the loss of drk in JO causes scolopidium abnormalities. drk mutant flies present deficits in negative geotaxis behavior, which can be suppressed by human wild-type but not mutant GRAP. Furthermore, drk specifically colocalizes with synapsin at synapses, suggesting a potential role of such adaptor proteins in regulating actin cytoskeleton dynamics in the nervous system. Our findings establish a causative link between GRAP mutation and nonsyndromic deafness and suggest a function of GRAP/drk in hearing.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GRB2 Adaptor Protein/metabolism , Hearing Loss, Sensorineural/metabolism , Amino Acid Sequence , Animals , Carrier Proteins/metabolism , Deafness/microbiology , Drosophila/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding/physiology , Signal Transduction/physiology
19.
Hum Mol Genet ; 28(8): 1286-1297, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30561639

ABSTRACT

Molecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.I109F) in a child with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is not found in public databases or in over 1000 ethnicity-matched control individuals. I109 is a highly conserved residue in the forkhead box (Fox) domain of FOXF2, a member of the Fox protein family of transcription factors that regulate the expression of genes involved in embryogenic development as well as adult life. Our in vitro studies show that the half-life of mutant FOXF2 is reduced compared to that of wild type. Foxf2 is expressed in the cochlea of developing and adult mice. The mouse knockout of Foxf2 shows shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Expressions of Eya1 and Pax3, genes essential for cochlear development, are reduced in the cochleae of Foxf2 knockout mice. We conclude that FOXF2 plays a major role in cochlear development and its dysfunction leads to SNHL and developmental anomalies of the cochlea in humans and mice.


Subject(s)
Cochlea/embryology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/physiology , Adult , Animals , Child , Cochlea/metabolism , Cochlea/physiology , Embryonic Development , Female , Hair Cells, Auditory/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Organogenesis , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/physiology , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/physiology , Signal Transduction/genetics , Whole Genome Sequencing
20.
Am J Med Genet A ; 182(3): 548-552, 2020 03.
Article in English | MEDLINE | ID: mdl-31833199

ABSTRACT

ZMIZ1, zinc finger MIZ-domain containing 1, has recently been described in association with syndromic intellectual disability in which the primary phenotypic features include intellectual disability/developmental delay, seizures, hearing loss, behavioral issues, failure to thrive, and various congenital malformations. Most reported cases have been found to result from de novo mutations except for one set of three siblings in which parental testing could not be performed. With informed consent from the family, we report on a father and his two sons demonstrating autosomal dominant inheritance of a novel pathogenic ZMIZ1 variant, c.1310delC (p.Pro437ArgfsX84), causing this recently described neurodevelopmental syndrome. While they all show syndromic findings along with short stature and intellectual disability, only one child had sensorineural hearing loss. Moreover, severity of intellectual disability and eyelid ptosis were variable among the affected members. Our report demonstrates that phenotypic features of ZMIZ1-related neurodevelopmental syndrome are variable even within the same family and that parental testing to identify a mildly affected parent is needed.


Subject(s)
Hearing Loss, Sensorineural/genetics , Intellectual Disability/genetics , Nervous System Malformations/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Aged , Alleles , Child , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Hearing Loss, Sensorineural/complications , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/pathology , Humans , Intellectual Disability/complications , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Middle Aged , Mutation/genetics , Nervous System Malformations/diagnosis , Nervous System Malformations/pathology , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/pathology , Parents , Siblings
SELECTION OF CITATIONS
SEARCH DETAIL