Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Genomics ; 25(1): 615, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890582

ABSTRACT

BACKGROUND: Nematodes are the most abundant and diverse metazoans on Earth, and are known to significantly affect ecosystem functioning. A better understanding of their biology and ecology, including potential adaptations to diverse habitats and lifestyles, is key to understanding their response to global change scenarios. Mitochondrial genomes offer high species level characterization, low cost of sequencing, and an ease of data handling that can provide insights into nematode evolutionary pressures. RESULTS: Generally, nematode mitochondrial genomes exhibited similar structural characteristics (e.g., gene size and GC content), but displayed remarkable variability around these general patterns. Compositional strand biases showed strong codon position specific G skews and relationships with nematode life traits (especially parasitic feeding habits) equal to or greater than with predicted phylogeny. On average, nematode mitochondrial genomes showed low non-synonymous substitution rates, but also high clade specific deviations from these means. Despite the presence of significant mutational saturation, non-synonymous (dN) and synonymous (dS) substitution rates could still be significantly explained by feeding habit and/or habitat. Low ratios of dN:dS rates, particularly associated with the parasitic lifestyles, suggested the presence of strong purifying selection. CONCLUSIONS: Nematode mitochondrial genomes demonstrated a capacity to accumulate diversity in composition, structure, and content while still maintaining functional genes. Moreover, they demonstrated a capacity for rapid evolutionary change pointing to a potential interaction between multi-level selection pressures and rapid evolution. In conclusion, this study helps establish a background for our understanding of the potential evolutionary pressures shaping nematode mitochondrial genomes, while outlining likely routes of future inquiry.


Subject(s)
Genome, Mitochondrial , Genomics , Nematoda , Phylogeny , Selection, Genetic , Animals , Nematoda/genetics , Genomics/methods , Base Composition , Evolution, Molecular , Codon/genetics
2.
J Nutr Biochem ; 19(2): 129-37, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18061429

ABSTRACT

A blood-brain barrier (BBB) model composed of porcine brain capillary endothelial cells (BCEC) was exposed to a moderately excessive zinc environment (50 micromol/L Zn) in cell culture, and longitudinal measurements were made of zinc transport kinetics, ZnT-1 (SLC30A1) expression and changes in the protein concentration of metallothionein (MT), ZnT-1, ZnT-2 (SLC30A2) and Zip1 (SLC39A1). Zinc release by cells of the BBB model significantly increased after 12-24 h of exposure, but decreased back to control levels after 48-96 h, as indicated by transport across the BBB from both the ablumenal (brain) and the lumenal (blood) directions. Expression of ZnT-1, the zinc export protein, increased by 169% within 12 h, but was no longer different from controls after 24 h. Likewise, ZnT-1 protein content increased transiently after 12 h of exposure, but returned to control levels by 24 h. Capacity for zinc uptake and retention increased from both the lumenal and the ablumenal directions within 12-24 h of exposure and remained elevated. MT and ZnT-2 were elevated within 12 h and remained elevated throughout the study. Zip1 was unchanged by the treatment. The BBB's response to a moderately high zinc environment was dynamic and involved multiple mechanisms. The initial response was to increase the cells' capacity to sequester zinc with additional MT and to increase zinc export with the ZnT-1 protein. But the longer-term strategy involved increasing ZnT-2 transporters, presumably to sequester zinc into intracellular vesicles as a mechanism to protect the brain and to maintain brain zinc homeostasis.


Subject(s)
Blood-Brain Barrier , Carrier Proteins/metabolism , Metallothionein/metabolism , Zinc/metabolism , Amino Acid Sequence , Animals , Base Sequence , Biological Transport , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cells, Cultured , DNA Primers , Homeostasis , Kinetics , Molecular Sequence Data , RNA, Messenger/genetics , Swine , Swine, Miniature
SELECTION OF CITATIONS
SEARCH DETAIL