Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 139(17): 2691-2705, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35313337

ABSTRACT

The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbß3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.


Subject(s)
Blood Platelets , Thrombosis , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Blood Platelets/metabolism , Chemokine CXCL12/metabolism , Collagen/metabolism , Mice , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombosis/metabolism
2.
Blood ; 137(17): 2383-2393, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33275657

ABSTRACT

High coagulation factor VIII (FVIII) levels comprise a common risk factor for venous thromboembolism (VTE), but the underlying genetic determinants are largely unknown. We investigated the molecular bases of high FVIII levels in 2 Italian families with severe thrombophilia. The proband of the first family had a history of recurrent VTE before age 50 years, with extremely and persistently elevated FVIII antigen and activity levels (>400%) as the only thrombophilic defects. Genetic analysis revealed a 23.4-kb tandem duplication of the proximal portion of the F8 gene (promoter, exon 1, and a large part of intron 1), which cosegregated with high FVIII levels in the family and was absent in 103 normal controls. Targeted screening of 50 unrelated VTE patients with FVIII levels ≥250% identified a second thrombophilic family with the same F8 rearrangement on the same genetic background, suggesting a founder effect. Carriers of the duplication from both families showed a twofold or greater upregulation of F8 messenger RNA, consistent with the presence of open chromatin signatures and enhancer elements within the duplicated region. Testing of these sequences in a luciferase reporter assay pinpointed a 927-bp region of F8 intron 1 associated with >45-fold increased reporter activity in endothelial cells, potentially mediating the F8 transcriptional enhancement observed in carriers of the duplication. In summary, we report the first thrombophilic defect in the F8 gene (designated FVIII Padua) associated with markedly elevated FVIII levels and severe thrombophilia in 2 Italian families.


Subject(s)
Biomarkers/analysis , Factor VIII/genetics , Gene Duplication , Genetic Predisposition to Disease , Thrombophilia/pathology , Adult , Aged , Case-Control Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Pedigree , Prognosis , Thrombophilia/genetics , Whole Genome Sequencing , Young Adult
3.
J Biol Chem ; 297(1): 100865, 2021 07.
Article in English | MEDLINE | ID: mdl-34118237

ABSTRACT

During feeding, a tick's mouthpart penetrates the host's skin and damages tissues and small blood vessels, triggering the extrinsic coagulation and lectin complement pathways. To elude these defense mechanisms, ticks secrete multiple anticoagulant proteins and complement system inhibitors in their saliva. Here, we characterized the inhibitory activities of the homologous tick salivary proteins tick salivary lectin pathway inhibitor, Salp14, and Salp9Pac from Ixodesscapularis in the coagulation cascade and the lectin complement pathway. All three proteins inhibited binding of mannan-binding lectin to the polysaccharide mannan, preventing the activation of the lectin complement pathway. In contrast, only Salp14 showed an appreciable effect on coagulation by prolonging the lag time of thrombin generation. We found that the anticoagulant properties of Salp14 are governed by its basic tail region, which resembles the C terminus of tissue factor pathway inhibitor alpha and blocks the assembly and/or activity of the prothrombinase complex in the same way. Moreover, the Salp14 protein tail contributes to the inhibition of the lectin complement pathway via interaction with mannan binding lectin-associated serine proteases. Furthermore, we identified BaSO4-adsorbing protein 1 isolated from the tick Ornithodoros savignyi as a distant homolog of tick salivary lectin pathway inhibitor/Salp14 proteins and showed that it inhibits the lectin complement pathway but not coagulation. The structure of BaSO4-adsorbing protein 1, solved here using NMR spectroscopy, indicated that this protein adopts a noncanonical epidermal growth factor domain-like structural fold, the first such report for tick salivary proteins. These data support a mechanism by which tick saliva proteins simultaneously inhibit both the host coagulation cascade and the lectin complement pathway.


Subject(s)
Arthropod Proteins/ultrastructure , Host-Pathogen Interactions/genetics , Lectins/genetics , Salivary Proteins and Peptides/ultrastructure , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Blood Coagulation/genetics , Blood Vessels/parasitology , Blood Vessels/pathology , Complement Pathway, Mannose-Binding Lectin/genetics , Ixodes/pathogenicity , Ixodes/ultrastructure , Lectins/ultrastructure , Magnetic Resonance Spectroscopy , Protein Conformation , Saliva/chemistry , Saliva/metabolism , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/genetics , Thrombin/genetics , Ticks/genetics , Ticks/pathogenicity
4.
J Am Chem Soc ; 144(9): 4057-4070, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35196454

ABSTRACT

Supramolecular materials based on the self-assembly of benzene-1,3,5-tricarboxamide (BTA) offer an approach to mimic fibrous self-assembled proteins found in numerous natural systems. Yet, synthetic methods to rapidly build complexity, scalability, and multifunctionality into BTA-based materials are needed. The diversity of BTA structures is often hampered by the limited flexibility of existing desymmetrization routes and the purification of multifunctional BTAs. To alleviate this bottleneck, we have developed a desymmetrization method based on activated ester coupling of a symmetric synthon. We created a small library of activated ester synthons and found that a pentafluorophenol benzene triester (BTE) enabled effective desymmetrization and creation of multifunctional BTAs in good yield with high reaction fidelity. This new methodology enabled the rapid synthesis of a small library of BTA monomers with hydrophobic and/or orthogonal reactive handles and could be extended to create polymeric BTA hydrogelators. These BTA hydrogelators self-assembled in water to create fiber and fibrous sheet-like structures as observed by cryo-TEM, and the identity of the BTA conjugated can tune the mechanical properties of the hydrogel. These hydrogelators display high cytocompatibility for chondrocytes, indicating potential for the use of these systems in 3D cell culture and tissue engineering applications. This newly developed synthetic strategy facilitates the simple and rapid creation of chemically diverse BTA supramolecular polymers, and the newly developed and scalable hydrogels can unlock exploration of BTA based materials in a wider variety of tissue engineering applications.


Subject(s)
Benzene , Esters , Benzamides/chemistry , Hydrogels , Polymers/chemistry
5.
Blood ; 135(22): 1969-1982, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32276277

ABSTRACT

Anticoagulant protein S (PS) in platelets (PSplt) resembles plasma PS and is released on platelet activation, but its role in thrombosis has not been elucidated. Here we report that inactivation of PSplt expression using the Platelet factor 4 (Pf4)-Cre transgene (Pros1lox/loxPf4-Cre+) in mice promotes thrombus propensity in the vena cava, where shear rates are low, but not in the carotid artery, where shear rates are high. At a low shear rate, PSplt functions as a cofactor for both activated protein C and tissue factor pathway inhibitor, thereby limiting factor X activation and thrombin generation within the growing thrombus and ensuring that highly activated platelets and fibrin remain localized at the injury site. In the presence of high thrombin concentrations, clots from Pros1lox/loxPf4-Cre- mice contract, but not clots from Pros1lox/loxPf4-Cre+ mice, because of highly dense fibrin networks. Thus, PSplt controls platelet activation as well as coagulation in thrombi in large veins, but not in large arteries.


Subject(s)
Blood Platelets/metabolism , Protein S/metabolism , Thrombosis/blood , Animals , Bleeding Time , Blood Coagulation/genetics , Blood Coagulation/physiology , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Female , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Platelet Activation/genetics , Platelet Activation/physiology , Platelet Aggregation/genetics , Platelet Aggregation/physiology , Platelet Factor 4/genetics , Platelet Factor 4/metabolism , Protein S/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thrombosis/etiology , Thrombosis/genetics , Venous Thrombosis/blood , Venous Thrombosis/etiology , Venous Thrombosis/genetics
6.
EMBO Rep ; 21(4): e47852, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32080959

ABSTRACT

Chemokines and galectins are simultaneously upregulated and mediate leukocyte recruitment during inflammation. Until now, these effector molecules have been considered to function independently. Here, we tested the hypothesis that they form molecular hybrids. By systematically screening chemokines for their ability to bind galectin-1 and galectin-3, we identified several interacting pairs, such as CXCL12 and galectin-3. Based on NMR and MD studies of the CXCL12/galectin-3 heterodimer, we identified contact sites between CXCL12 ß-strand 1 and Gal-3 F-face residues. Mutagenesis of galectin-3 residues involved in heterodimer formation resulted in reduced binding to CXCL12, enabling testing of functional activity comparatively. Galectin-3, but not its mutants, inhibited CXCL12-induced chemotaxis of leukocytes and their recruitment into the mouse peritoneum. Moreover, galectin-3 attenuated CXCL12-stimulated signaling via its receptor CXCR4 in a ternary complex with the chemokine and receptor, consistent with our structural model. This first report of heterodimerization between chemokines and galectins reveals a new type of interaction between inflammatory mediators that can underlie a novel immunoregulatory mechanism in inflammation. Thus, further exploration of the chemokine/galectin interactome is warranted.


Subject(s)
Galectins , Inflammation , Animals , Chemotaxis , Galectins/genetics , Galectins/metabolism , Inflammation/genetics , Leukocytes/metabolism , Mice , Signal Transduction
7.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054772

ABSTRACT

Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation.


Subject(s)
Calcinosis , Cell Proliferation , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Platelet Factor 4/physiology , Cells, Cultured , Gene Expression Regulation , Humans , Kruppel-Like Factor 4/genetics , Muscle, Smooth, Vascular/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Platelet Factor 4/metabolism
8.
Int J Mol Sci ; 23(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35216161

ABSTRACT

The plasmatic von Willebrand factor (VWF) circulates in a compact form unable to bind platelets. Upon shear stress, the VWF A1 domain is exposed, allowing VWF-binding to platelet glycoprotein Ib-V-IX (GPIbα chain). For a better understanding of the role of this interaction in cardiovascular disease, molecules are needed to specifically interfere with the opened VWF A1 domain interaction with GPIbα. Therefore, we in silico designed and chemically synthetized stable cyclic peptides interfering with the platelet-binding of the VWF A1 domain per se or complexed with botrocetin. Selected peptides (26-34 amino acids) with the lowest-binding free energy were: the monocyclic mono- vOn Willebrand factoR-GPIbα InTerference (ORbIT) peptide and bicyclic bi-ORbIT peptide. Interference of the peptides in the binding of VWF to GPIb-V-IX interaction was retained by flow cytometry in comparison with the blocking of anti-VWF A1 domain antibody CLB-RAg35. In collagen and VWF-dependent whole-blood thrombus formation at a high shear rate, CLB-RAg35 suppressed stable platelet adhesion as well as the formation of multilayered thrombi. Both peptides phenotypically mimicked these changes, although they were less potent than CLB-RAg35. The second-round generation of an improved peptide, namely opt-mono-ORbIT (28 amino acids), showed an increased inhibitory activity under flow. Accordingly, our structure-based design of peptides resulted in physiologically effective peptide-based inhibitors, even for convoluted complexes such as GPIbα-VWF A1.


Subject(s)
Blood Platelets/physiology , Peptides/chemistry , Platelet Aggregation , Platelet Glycoprotein GPIb-IX Complex/chemistry , von Willebrand Factor/chemistry , Animals , Binding Sites , Blood Platelets/metabolism , Cells, Cultured , Horses , Humans , Microfluidics , Peptides/metabolism , Protein Binding , Stress, Mechanical , von Willebrand Factor/metabolism
9.
J Biol Chem ; 295(42): 14367-14378, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32817341

ABSTRACT

Ticks, as blood-sucking parasites, have developed a complex strategy to evade and suppress host immune responses during feeding. The crucial part of this strategy is expression of a broad family of salivary proteins, called Evasins, to neutralize chemokines responsible for cell trafficking and recruitment. However, structural information about Evasins is still scarce, and little is known about the structural determinants of their binding mechanism to chemokines. Here, we studied the structurally uncharacterized Evasin-4, which neutralizes a broad range of CC-motif chemokines, including the chemokine CC-motif ligand 5 (CCL5) involved in atherogenesis. Crystal structures of Evasin-4 and E66S CCL5, an obligatory dimeric variant of CCL5, were determined to a resolution of 1.3-1.8 Å. The Evasin-4 crystal structure revealed an L-shaped architecture formed by an N- and C-terminal subdomain consisting of eight ß-strands and an α-helix that adopts a substantially different position compared with closely related Evasin-1. Further investigation into E66S CCL5-Evasin-4 complex formation with NMR spectroscopy showed that residues of the N terminus are involved in binding to CCL5. The peptide derived from the N-terminal region of Evasin-4 possessed nanomolar affinity to CCL5 and inhibited CCL5 activity in monocyte migration assays. This suggests that Evasin-4 derivatives could be used as a starting point for the development of anti-inflammatory drugs.


Subject(s)
Chemokine CCL5/antagonists & inhibitors , Salivary Proteins and Peptides/chemistry , Ticks/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Movement/drug effects , Chemokine CCL5/metabolism , Crystallography, X-Ray , Humans , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism
10.
Clin Infect Dis ; 73(11): e4039-e4046, 2021 12 06.
Article in English | MEDLINE | ID: mdl-32852539

ABSTRACT

BACKGROUND: Respiratory failure and thromboembolism are frequent in severe acute respiratory syndrome coronavirus 2-infected patients. Vitamin K activates both hepatic coagulation factors and extrahepatic endothelial anticoagulant protein S, required for thrombosis prevention. In times of vitamin K insufficiency, hepatic procoagulant factors are preferentially activated over extrahepatic proteins. Vitamin K also activates matrix Gla protein (MGP), which protects against pulmonary and vascular elastic fiber damage. We hypothesized that vitamin K may be implicated in coronavirus disease 2019 (COVID-19), linking pulmonary and thromboembolic disease. METHODS: A total of 135 hospitalized COVID-19 patients were compared with 184 historic controls. Inactive vitamin K-dependent MGP (desphospho-uncarboxylated [dp-uc] MGP) and prothrombin (PIVKA-II) were measured inversely related to extrahepatic and hepatic vitamin K status, respectively. Desmosine was measured to quantify the rate of elastic fiber degradation. Arterial calcification severity was assessed using computed tomography. RESULTS: dp-ucMGP was elevated in COVID-19 patients compared with controls (P < .001), with even higher dp-ucMGP in patients with poor outcomes (P < .001). PIVKA-II was normal in 82.1% of patients. dp-ucMGP was correlated with desmosine (P < .001) and with coronary artery (P = .002) and thoracic aortic (P < .001) calcification scores. CONCLUSIONS: dp-ucMGP was severely increased in COVID-19 patients, indicating extrahepatic vitamin K insufficiency, which was related to poor outcome; hepatic procoagulant factor II remained unaffected. These data suggest pneumonia-induced extrahepatic vitamin K depletion leading to accelerated elastic fiber damage and thrombosis in severe COVID-19 due to impaired activation of MGP and endothelial protein S, respectively.


Subject(s)
COVID-19 , Biomarkers , Humans , Risk Factors , SARS-CoV-2 , Vitamin K 1/analogs & derivatives
11.
Epidemiol Infect ; 149: e73, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33678199

ABSTRACT

The spatio-temporal dynamics of an outbreak provide important insights to help direct public health resources intended to control transmission. They also provide a focus for detailed epidemiological studies and allow the timing and impact of interventions to be assessed.A common approach is to aggregate case data to administrative regions. Whilst providing a good visual impression of change over space, this method masks spatial variation and assumes that disease risk is constant across space. Risk factors for COVID-19 (e.g. population density, deprivation and ethnicity) vary from place to place across England so it follows that risk will also vary spatially. Kernel density estimation compares the spatial distribution of cases relative to the underlying population, unfettered by arbitrary geographical boundaries, to produce a continuous estimate of spatially varying risk.Using test results from healthcare settings in England (Pillar 1 of the UK Government testing strategy) and freely available methods and software, we estimated the spatial and spatio-temporal risk of COVID-19 infection across England for the first 6 months of 2020. Widespread transmission was underway when partial lockdown measures were introduced on 23 March 2020 and the greatest risk erred towards large urban areas. The rapid growth phase of the outbreak coincided with multiple introductions to England from the European mainland. The spatio-temporal risk was highly labile throughout.In terms of controlling transmission, the most important practical application of our results is the accurate identification of areas within regions that may require tailored intervention strategies. We recommend that this approach is absorbed into routine surveillance outputs in England. Further risk characterisation using widespread community testing (Pillar 2) data is needed as is the increased use of predictive spatial models at fine spatial scales.


Subject(s)
COVID-19/diagnosis , Time Factors , COVID-19/classification , COVID-19/epidemiology , England/epidemiology , Humans , Population Surveillance/methods , Risk Evaluation and Mitigation , Risk Factors , Spatio-Temporal Analysis , Urban Population/statistics & numerical data
12.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806083

ABSTRACT

The integrin αIIbß3 is the most abundant integrin on platelets. Upon platelet activation, the integrin changes its conformation (inside-out signalling) and outside-in signalling takes place leading to platelet spreading, platelet aggregation and thrombus formation. Bloodsucking parasites such as mosquitoes, leeches and ticks express anticoagulant and antiplatelet proteins, which represent major sources of lead compounds for the development of useful therapeutic agents for the treatment of haemostatic disorders or cardiovascular diseases. In addition to hematophagous parasites, snakes also possess anticoagulant and antiplatelet proteins in their salivary glands. Two snake venom proteins have been developed into two antiplatelet drugs that are currently used in the clinic. The group of proteins discussed in this review are disintegrins, low molecular weight integrin-binding cysteine-rich proteins, found in snakes, ticks, leeches, worms and horseflies. Finally, we highlight various oral antagonists, which have been tested in clinical trials but were discontinued due to an increase in mortality. No new αIIbß3 inhibitors are developed since the approval of current platelet antagonists, and structure-function analysis of exogenous disintegrins could help find platelet antagonists with fewer adverse side effects.


Subject(s)
Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation/drug effects , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombosis/therapy , Actins/chemistry , Ancylostoma , Animals , Binding Sites , Blood Platelets/metabolism , Diptera , Disintegrins/chemistry , Drug Design , Fibrinolytic Agents/pharmacology , Humans , Ligands , Platelet Function Tests , Platelet Glycoprotein GPIIb-IIIa Complex/antagonists & inhibitors , Signal Transduction , Snake Venoms/metabolism , Snakes
13.
J Biol Chem ; 294(33): 12370-12379, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31235521

ABSTRACT

Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8-Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17-56 and cyclic tcEv3 16-56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17-56 and tcEv3 16-56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.


Subject(s)
Arthropod Proteins , Glycosaminoglycans , Neutrophils/metabolism , Receptors, Interleukin-8B , Rhipicephalus sanguineus/chemistry , Salivary Proteins and Peptides , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Cell Movement , Dogs , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Humans , Protein Structure, Quaternary , Receptors, Interleukin-8B/chemistry , Receptors, Interleukin-8B/metabolism , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism
14.
Bioconjug Chem ; 31(3): 948-955, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32077689

ABSTRACT

Atherosclerosis is one of the leading causes of mortality in developed and developing countries. The onset of atherosclerosis development is accompanied by overexpression of several inflammatory chemokines. Neutralization of these chemokines by chemokine-binding agents attenuates atherosclerosis progression. Here, we studied structural binding features of the tick protein Evasin-3 to chemokine (C-X-C motif) ligand 1 (CXCL1). We showed that Evasin-3-bound CXCL1 is unable to activate the CXCR2 receptor, but retains affinity to glycosaminoglycans. This observation was exploited to detect inflammation by visualizing a group of closely related CXC-type chemokines deposited on cell walls in human endothelial cells and murine carotid arteries by a fluorescent Evasin-3 conjugate. This work highlights the applicability of tick-derived chemokine-binding conjugates as a platform for the development of new agents for inflammation imaging.


Subject(s)
Arthropod Proteins/metabolism , Carotid Artery Diseases/diagnostic imaging , Chemokines, CXC/metabolism , Endothelium, Vascular/metabolism , Ticks , Animals , Carotid Artery Diseases/metabolism , Glycosaminoglycans/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/diagnostic imaging , Inflammation/metabolism , Mice
15.
Proc Natl Acad Sci U S A ; 113(44): 12532-12537, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27791128

ABSTRACT

Therapeutic targeting of the VEGF signaling axis by the VEGF-neutralizing monoclonal antibody bevacizumab has clearly demonstrated clinical benefit in cancer patients. To improve this strategy using a polyclonal approach, we developed a vaccine targeting VEGF using 3D-structured peptides that mimic the bevacizumab binding site. An in-depth study on peptide optimization showed that the antigen's 3D structure is essential to achieve neutralizing antibody responses. Peptide 1 adopts a clear secondary, native-like structure, including the typical cysteine-knot fold, as evidenced by CD spectroscopy. Binding and competition studies with bevacizumab in ELISA and surface plasmon resonance analysis revealed that peptide 1 represents the complete bevacizumab binding site, including the hairpin loop (ß5-turn-ß6) and the structure-supporting ß2-α2-ß3 loop. Vaccination with peptide 1 elicited high titers of cross-reactive antibodies to VEGF, with potent neutralizing activity. Moreover, vaccination-induced antisera displayed strong angiostatic and tumor-growth-inhibiting properties in a preclinical mouse model for colorectal carcinoma, whereas antibodies raised with peptides exclusively encompassing the ß5-turn-ß6 loop (peptides 15 and 20) did not. Immunization with peptide 1 or 7 (murine analog of 1) in combination with the potent adjuvant raffinose fatty acid sulfate ester (RFASE) showed significant inhibition of tumor growth in the B16F10 murine melanoma model. Based on these data, we conclude that this vaccination technology, which is currently being investigated in a phase I clinical trial (NCT02237638), can potentially outperform currently applied anti-VEGF therapeutics.


Subject(s)
Bevacizumab/therapeutic use , Colonic Neoplasms/drug therapy , Peptides/therapeutic use , Vaccination/methods , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Amino Acid Sequence , Angiogenesis Inhibitors/immunology , Angiogenesis Inhibitors/therapeutic use , Animals , Antibodies, Neutralizing/immunology , Bevacizumab/immunology , Binding Sites/immunology , Cell Line, Tumor , Colonic Neoplasms/immunology , Cross Reactions/immunology , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Molecular Targeted Therapy/methods , Peptides/chemistry , Peptides/immunology , Rats, Wistar , Vascular Endothelial Growth Factor A/immunology , Xenograft Model Antitumor Assays
16.
Tech Coloproctol ; 23(3): 259-266, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30941619

ABSTRACT

BACKGROUND: Minimally invasive approaches have become the standard of care for ileal pouch-anal anastomoses (IPAA). There are few reports comparing outcomes following a laparoscopic versus robotic approach. Our aim was to determine if there were any differences in the 30-day postoperative outcomes following IPAA performed laparoscopically versus robotically. METHODS: A retrospective chart review of all laparoscopic and robotic IPAA performed between January 1, 2015 and June 30, 2018 was carried out. Patients included were adult patients who underwent a proctectomy and IPAA utilizing either a laparoscopic or robotic approach. Data collected included patient demographics, operative variables, and 30-day postoperative outcomes. RESULTS: A total of 132 patients had a minimally invasive IPAA; 58 were performed laparoscopically and 74 robotically. Less than half the patients were female (n = 55; 41.7%) with a median age of 37 years (range 18-68 years). The majority of patients had a diagnosis of ulcerative colitis (n = 103; 78.0%) with medically refractory disease (n = 87; 65.9%). A greater proportion of patients in the laparoscopic cohort had a prolonged length of stay (n = 27; 46.6% versus n = 18; 24.3%; p < 0.001) and a two-stage approach (n = 56; 96.6% versus n = 37; 50%; p < 0.001), but there were no differences in the rates between the laparoscopic versus robotic cohorts of superficial surgical site infection (6.9% versus 6.8%; p = 0.99), peripouch abscess (15.5% versus 6.8%; p = 0.11), anastomotic leak (6.9% versus 2.7%; p = 0.21), pelvic abscess (15.5% versus 6.8%; p = 0.11), and pelvic sepsis (15.5% versus 6.8%; p = 0.11), readmission (24.1% versus 17.6%; p = 0.35) or reoperation (6.9% versus 5.4%; p = 0.72). On multivariable analysis, only male sex remained predictive of prolonged length of stay, and a robotic approach trended toward a decreased rate of prolonged length of stay. CONCLUSIONS: Laparoscopic and robotic IPAA have equivalent postoperative morbidity underscoring the safety of the continued expansion of the robotic platform for pouch surgery.


Subject(s)
Colitis, Ulcerative/surgery , Laparoscopy/statistics & numerical data , Postoperative Complications/epidemiology , Proctocolectomy, Restorative/methods , Robotic Surgical Procedures/statistics & numerical data , Adolescent , Adult , Aged , Female , Humans , Laparoscopy/methods , Male , Middle Aged , Postoperative Complications/etiology , Retrospective Studies , Robotic Surgical Procedures/methods , Treatment Outcome , Young Adult
17.
Circulation ; 136(4): 388-403, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28450349

ABSTRACT

BACKGROUND: The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the CXCR4 gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection. METHODS: We examined the role of vascular CXCR4 in atherosclerosis and plaque composition by inducing an endothelial cell (BmxCreERT2-driven)-specific or smooth muscle cell (SMC, SmmhcCreERT2- or TaglnCre-driven)-specific deficiency of CXCR4 in an apolipoprotein E-deficient mouse model. To identify underlying mechanisms for effects of CXCR4, we studied endothelial permeability, intravital leukocyte adhesion, involvement of the Akt/WNT/ß-catenin signaling pathway and relevant phosphatases in VE-cadherin expression and function, vascular tone in aortic rings, cholesterol efflux from macrophages, and expression of SMC phenotypic markers. Finally, we analyzed associations of common genetic variants at the CXCR4 locus with the risk for coronary heart disease, along with CXCR4 transcript expression in human atherosclerotic plaques. RESULTS: The cell-specific deletion of CXCR4 in arterial endothelial cells (n=12-15) or SMCs (n=13-24) markedly increased atherosclerotic lesion formation in hyperlipidemic mice. Endothelial barrier function was promoted by CXCL12/CXCR4, which triggered Akt/WNT/ß-catenin signaling to drive VE-cadherin expression and stabilized junctional VE-cadherin complexes through associated phosphatases. Conversely, endothelial CXCR4 deficiency caused arterial leakage and inflammatory leukocyte recruitment during atherogenesis. In arterial SMCs, CXCR4 sustained normal vascular reactivity and contractile responses, whereas CXCR4 deficiency favored a synthetic phenotype, the occurrence of macrophage-like SMCs in the lesions, and impaired cholesterol efflux. Regression analyses in humans (n=259 796) identified the C-allele at rs2322864 within the CXCR4 locus to be associated with increased risk for coronary heart disease. In line, C/C risk genotype carriers showed reduced CXCR4 expression in carotid artery plaques (n=188), which was furthermore associated with symptomatic disease. CONCLUSIONS: Our data clearly establish that vascular CXCR4 limits atherosclerosis by maintaining arterial integrity, preserving endothelial barrier function, and a normal contractile SMC phenotype. Enhancing these beneficial functions of arterial CXCR4 by selective modulators might open novel therapeutic options in atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Endothelial Cells/metabolism , Receptors, CXCR4/biosynthesis , Animals , Atherosclerosis/genetics , Capillary Permeability/physiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR4/genetics
18.
Chembiochem ; 19(18): 1934-1938, 2018 09 17.
Article in English | MEDLINE | ID: mdl-29944773

ABSTRACT

A broadly applicable one-pot methodology for the facile transformation of linear peptides into tetracyclic peptides through a chemoenzymatic peptide synthesis/chemical ligation of peptides onto scaffolds/copper(I)-catalyzed reaction (CEPS/CLIPS/CuAAC; "triple-C") locking methodology is reported. Linear peptides with varying lengths (≥14 amino acids), comprising two cysteines and two azidohomoalanines (Aha), were efficiently cyclized head-to-tail by using the peptiligase variant omniligase-1 (CEPS). Subsequent ligation-cyclization with tetravalent (T41/2 ) scaffolds containing two bromomethyl groups (CLIPS) and two alkyne functionalities (CuAAC) yielded isomerically pure tetracyclic peptides. Sixteen different functional tetracycles, derived from bicyclic inhibitors against urokinase plasminogen activator (uPA) and coagulation factor XIIa (FXIIa), were successfully synthesized and their bioactivities evaluated. Two of these (FF-T41/2 ) exhibited increased inhibitory activity against FXIIa, compared with a bicyclic control peptide. The corresponding hetero-bifunctional variants (UF/FU-T41/2 ), with a single copy of each inhibitory sequence, exhibited micromolar activities against both uPA and FXIIa; thus illustrating the potential of the "bifunctional tetracyclic peptide" inhibitor concept.


Subject(s)
Peptides, Cyclic/chemical synthesis , Peptides/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Amino Acid Sequence , Combinatorial Chemistry Techniques , Cyclization , Cysteine/chemistry , Factor XIIa/antagonists & inhibitors , Humans , Models, Molecular , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Urokinase-Type Plasminogen Activator/antagonists & inhibitors
19.
Stat Med ; 37(7): 1191-1221, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29226352

ABSTRACT

Kernel smoothing is a highly flexible and popular approach for estimation of probability density and intensity functions of continuous spatial data. In this role, it also forms an integral part of estimation of functionals such as the density-ratio or "relative risk" surface. Originally developed with the epidemiological motivation of examining fluctuations in disease risk based on samples of cases and controls collected over a given geographical region, such functions have also been successfully used across a diverse range of disciplines where a relative comparison of spatial density functions has been of interest. This versatility has demanded ongoing developments and improvements to the relevant methodology, including use spatially adaptive smoothers; tests of significantly elevated risk based on asymptotic theory; extension to the spatiotemporal domain; and novel computational methods for their evaluation. In this tutorial paper, we review the current methodology, including the most recent developments in estimation, computation, and inference. All techniques are implemented in the new software package sparr, publicly available for the R language, and we illustrate its use with a pair of epidemiological examples.


Subject(s)
Risk Assessment/methods , Spatio-Temporal Analysis , Computer Simulation , Data Interpretation, Statistical , Humans , Monte Carlo Method , Reproducibility of Results , Risk , Software
20.
Arterioscler Thromb Vasc Biol ; 37(3): e22-e32, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28104608

ABSTRACT

OBJECTIVE: The drug warfarin blocks carboxylation of vitamin K-dependent proteins and acts as an anticoagulant and an accelerant of vascular calcification. The calcification inhibitor MGP (matrix Gla [carboxyglutamic acid] protein), produced by vascular smooth muscle cells (VSMCs), is a key target of warfarin action in promoting calcification; however, it remains unclear whether proteins in the coagulation cascade also play a role in calcification. APPROACH AND RESULTS: Vascular calcification is initiated by exosomes, and proteomic analysis revealed that VSMC exosomes are loaded with Gla-containing coagulation factors: IX and X, PT (prothrombin), and proteins C and S. Tracing of Alexa488-labeled PT showed that exosome loading occurs by direct binding to externalized phosphatidylserine (PS) on the exosomal surface and by endocytosis and recycling via late endosomes/multivesicular bodies. Notably, the PT Gla domain and a synthetic Gla domain peptide inhibited exosome-mediated VSMC calcification by preventing nucleation site formation on the exosomal surface. PT was deposited in the calcified vasculature, and there was a negative correlation between vascular calcification and the levels of circulating PT. In addition, we found that VSMC exosomes induced thrombogenesis in a tissue factor-dependent and PS-dependent manner. CONCLUSIONS: Gamma-carboxylated coagulation proteins are potent inhibitors of vascular calcification suggesting warfarin action on these factors also contributes to accelerated calcification in patients receiving this drug. VSMC exosomes link calcification and coagulation acting as novel activators of the extrinsic coagulation pathway and inducers of calcification in the absence of Gla-containing inhibitors.


Subject(s)
Blood Coagulation , Exosomes/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Prothrombin/metabolism , Vascular Calcification/metabolism , Aged , Anticoagulants/adverse effects , Blood Coagulation/drug effects , Calcium-Binding Proteins/metabolism , Cells, Cultured , Endocytosis , Endosomes/metabolism , Exosomes/drug effects , Extracellular Matrix Proteins/metabolism , Female , Humans , Male , Middle Aged , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Peptides/pharmacology , Phosphatidylserines/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Signal Transduction , Vascular Calcification/chemically induced , Vascular Calcification/pathology , Vascular Calcification/prevention & control , Warfarin/adverse effects , Matrix Gla Protein
SELECTION OF CITATIONS
SEARCH DETAIL