Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38958156

ABSTRACT

Force Field X (FFX) is an open-source software package for atomic resolution modeling of genetic variants and organic crystals that leverages advanced potential energy functions and experimental data. FFX currently consists of nine modular packages with novel algorithms that include global optimization via a many-body expansion, acid-base chemistry using polarizable constant-pH molecular dynamics, estimation of free energy differences, generalized Kirkwood implicit solvent models, and many more. Applications of FFX focus on the use and development of a crystal structure prediction pipeline, biomolecular structure refinement against experimental datasets, and estimation of the thermodynamic effects of genetic variants on both proteins and nucleic acids. The use of Parallel Java and OpenMM combines to offer shared memory, message passing, and graphics processing unit parallelization for high performance simulations. Overall, the FFX platform serves as a computational microscope to study systems ranging from organic crystals to solvated biomolecular systems.


Subject(s)
Software , Molecular Dynamics Simulation , Genetic Variation , Algorithms , Thermodynamics , Proteins/chemistry , Crystallization , Nucleic Acids/chemistry
2.
Hum Genet ; 142(6): 819-834, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086329

ABSTRACT

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.


Subject(s)
Deafness , Hearing Loss , Humans , Proteome/genetics , Hearing Loss/genetics , Mutation, Missense , Deafness/genetics
3.
Biophys J ; 117(3): 602-612, 2019 08 06.
Article in English | MEDLINE | ID: mdl-31327459

ABSTRACT

Hearing loss is associated with ∼8100 mutations in 152 genes, and within the coding regions of these genes are over 60,000 missense variants. The majority of these variants are classified as "variants of uncertain significance" to reflect our inability to ascribe a phenotypic effect to the observed amino acid change. A promising source of pathogenicity information is biophysical simulation, although input protein structures often contain defects because of limitations in experimental data and/or only distant homology to a template. Here, we combine the polarizable atomic multipole optimized energetics for biomolecular applications force field, many-body optimization theory, and graphical processing unit acceleration to repack all deafness-associated proteins and thereby improve average structure MolProbity score from 2.2 to 1.0. We then used these optimized wild-type models to create over 60,000 structures for missense variants in the Deafness Variation Database, which are being incorporated into the Deafness Variation Database to inform deafness pathogenicity prediction. Finally, this work demonstrates that advanced polarizable atomic multipole force fields are efficient enough to repack the entire human proteome.


Subject(s)
Algorithms , Hearing Loss/genetics , Proteins/chemistry , Biophysical Phenomena , Databases, Protein , Humans , Models, Molecular
4.
JAMA Ophthalmol ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39325437

ABSTRACT

Importance: This research confirms and further establishes that pathogenic variants in a fourth gene, METTL23, are associated with autosomal dominant normal-tension glaucoma (NTG). Objective: To determine the frequency of glaucoma-causing pathogenic variants in the METTL23 gene in a cohort of patients with NTG from Iowa. Design, Setting, and Participants: This case-control study took place at a single tertiary care center in Iowa from January 1997 to January 2024, with analysis occurring between January 2023 and January 2024. Two groups of participants were enrolled from the University of Iowa clinics: 331 patients with NTG and 362 control individuals without glaucoma. Patients with a history of trauma; steroid use; stigmata of pigment dispersion syndrome; exfoliation syndrome; or pathogenic variants in MYOC, TBK1, or OPTN were also excluded. Main Outcomes and Measures: Detection of an enrichment of METTL23 pathogenic variants in individuals with NTG compared with control individuals without glaucoma. Results: The study included 331 patients with NTG (mean [SD] age, 68.0 [11.7] years; 228 [68.9%] female and 103 [31.1%] male) and 362 control individuals without glaucoma (mean [SD] age, 64.5 [12.6] years; 207 [57.2%] female and 155 [42.8%] male). There were 5 detected instances of 4 unique METTL23 pathogenic variants in patients with NTG. Three METTL23 variants-p.Ala7Val, p.Pro22Arg, and p.Arg63Trp-were judged to be likely pathogenic and were detected in 3 patients (0.91%) with NTG. However, when all detected variants were evaluated with either mutation burden analysis or logistic regression, their frequency was not statistically higher in individuals with NTG than in control individuals without glaucoma (1.5% vs 2.5%; P = .27). Conclusion and Relevance: This investigation provides evidence that pathogenic variants in METTL23 are associated with NTG. Within an NTG cohort at a tertiary care center, pathogenic variants were associated with approximately 1% of NTG cases, a frequency similar to that of other known normal-tension glaucoma genes, including optineurin (OPTN), TANK-binding kinase 1 (TBK1), and myocilin (MYOC). The findings suggest that METTL23 pathogenic variants are likely involved in a biologic pathway that is associated with glaucoma that occurs at lower intraocular pressures.

5.
JAMA Ophthalmol ; 141(9): 872-879, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37589989

ABSTRACT

Importance: The p.Asp67Tyr genetic variant in the GJA3 gene is responsible for congenital cataracts in a family with a high incidence of glaucoma following cataract surgery. Objective: To describe the clinical features of a family with a strong association between congenital cataracts and glaucoma following cataract surgery secondary to a genetic variant in the GJA3 gene (NM_021954.4:c.199G>T, p.Asp67Tyr). Design, Setting, and Participants: This was a retrospective, observational, case series, genetic association study from the University of Iowa spanning 61 years. Examined were the ophthalmic records from 1961 through 2022 of the family members of a 4-generation pedigree with autosomal dominant congenital cataracts. Main Outcomes and Measures: Frequency of glaucoma following cataract surgery and postoperative complications among family members with congenital cataract due to the p.Asp67Tyr GJA3 genetic variant. Results: Medical records were available from 11 of 12 family members (7 male [63.6%]) with congenital cataract with a mean (SD) follow-up of 30 (21.7) years (range, 0.2-61 years). Eight of 9 patients with congenital cataracts developed glaucoma, and 8 of 8 patients who had cataract surgery at age 2 years or younger developed glaucoma following cataract surgery. The only family member with congenital cataracts who did not develop glaucoma had delayed cataract surgery until 12 and 21 years of age. Five of 11 family members (45.5%) had retinal detachments after cataract extraction and vitrectomy. No patients developed retinal detachments after prophylactic 360-degree endolaser. Conclusions and Relevance: The GJA3 genetic variant, p.Asp67Tyr, was identified in a 4-generation congenital cataract pedigree from Iowa. This report suggests that patients with congenital cataract due to some GJA3 genetic variants may be at especially high risk for glaucoma following cataract surgery. Retinal detachments after cataract extraction in the first 2 years of life were also common in this family, and prophylactic retinal endolaser may be indicated at the time of surgery.


Subject(s)
Cataract Extraction , Cataract , Connexins , Glaucoma , Retinal Detachment , Child , Child, Preschool , Humans , Male , Cataract/genetics , Cataract Extraction/adverse effects , Genetic Variation , Glaucoma/genetics , Retina , Retrospective Studies , Connexins/genetics
6.
Res Sq ; 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36778238

ABSTRACT

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.

7.
Curr Eye Res ; 45(1): 91-96, 2020 01.
Article in English | MEDLINE | ID: mdl-31361967

ABSTRACT

Purpose: Aniridia is a rare congenital eye disease, characterized by a constellation of symptoms including hypoplastic irides, foveal hypoplasia, early cataract, corneal stem cell deficiency, and glaucoma. Large chromosomal deletions spanning the PAX6 gene cause WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and intellectual disability [formerly called mental retardation]). We describe clinical and genetic studies of a three-generation pedigree with aniridia along with additional systemic conditions (morbid obesity, diabetes) suggesting the possibility of a contiguous-gene syndrome like WAGR.Methods: Clinical records were obtained and DNA was prepared from blood samples from three of the four patients and tested for mutations in the coding sequences of the PAX6 gene. The index patient also had cardiomyopathy and was tested for known cardiomyopathy genetic mutations using a next-generation DNA sequencing assay.Results: We discovered a novel intragenic PAX6 mutation, a 16 bp heterozygous deletion c.203delCCAGGGCAATCGGTGG, with Sanger sequencing that is the likely cause of autosomal dominant aniridia in this pedigree. This PAX6 deletion causes a frameshift in predicted protein translation and a subsequent premature termination, p.Pro68Leufs*6. The PAX6 deletion was detected in all three available family members with aniridia, the index patient, his mother, and his maternal aunt but was not observed in the Exome Aggregation Consortium (ExAC) database. Targeted sequencing of known cardiomyopathy genes in the index patient identified a second mutation, a 1.7 Mp deletion that spans the MYBPC3 gene.Conclusions: We report a pedigree with aniridia and other systemic abnormalities that were initially suspicious for a contiguous-gene syndrome like WAGR. However, genetic analysis of the pedigree revealed two independent genetic abnormalities on chromosome 11p: 1) a novel PAX6 mutation, and 2) a large chromosome deletion spanning MYBPC3, a known cardiomyopathy gene. It is unclear if morbid obesity and type II diabetes mellitus have a related genetic cause.


Subject(s)
Aniridia/genetics , DNA/genetics , Diabetes Mellitus, Type 2/genetics , Mutation , Obesity, Morbid/genetics , PAX6 Transcription Factor/genetics , Aniridia/metabolism , DNA/metabolism , DNA Mutational Analysis , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Obesity, Morbid/metabolism , PAX6 Transcription Factor/metabolism , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL