Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34508652

ABSTRACT

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiology
2.
Cell ; 165(4): 1002-11, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27114037

ABSTRACT

Studies of long-lived individuals have revealed few genetic mechanisms for protection against age-associated disease. Therefore, we pursued genome sequencing of a related phenotype-healthy aging-to understand the genetics of disease-free aging without medical intervention. In contrast with studies of exceptional longevity, usually focused on centenarians, healthy aging is not associated with known longevity variants, but is associated with reduced genetic susceptibility to Alzheimer and coronary artery disease. Additionally, healthy aging is not associated with a decreased rate of rare pathogenic variants, potentially indicating the presence of disease-resistance factors. In keeping with this possibility, we identify suggestive common and rare variant genetic associations implying that protection against cognitive decline is a genetic component of healthy aging. These findings, based on a relatively small cohort, require independent replication. Overall, our results suggest healthy aging is an overlapping but distinct phenotype from exceptional longevity that may be enriched with disease-protective genetic factors. VIDEO ABSTRACT.


Subject(s)
Aging/genetics , Genome-Wide Association Study , Longevity , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Cognitive Aging , Cohort Studies , Coronary Artery Disease/genetics , Female , Genetic Predisposition to Disease , Humans , Male
3.
Brain ; 145(10): 3383-3390, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35737950

ABSTRACT

The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.


Subject(s)
Endocannabinoids , Nervous System Diseases , Humans , Child , Phenotype , Nervous System Diseases/genetics , Heterozygote , Syndrome , Mutant Proteins
4.
Hum Mol Genet ; 27(23): 4135-4144, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30452684

ABSTRACT

Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.


Subject(s)
Carrier Proteins/genetics , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Myopathies/genetics , Child , DNA, Mitochondrial/genetics , Female , Fibroblasts/metabolism , Genetic Predisposition to Disease , Humans , Lactic Acid/cerebrospinal fluid , Membrane Transport Proteins/genetics , Mitochondria/pathology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Mitochondrial Myopathies/cerebrospinal fluid , Mitochondrial Myopathies/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Exome Sequencing
5.
Genet Med ; 19(10): 1179-1183, 2017 10.
Article in English | MEDLINE | ID: mdl-28383544

ABSTRACT

PURPOSE: Nail-Patella syndrome is a dominantly inherited genetic disorder characterized by abnormalities of the nails, knees, elbows, and pelvis. Nail abnormalities are the most constant feature of Nail-Patella syndrome. Pathogenic mutations in a single gene, LMX1B, a mesenchymal determinant of dorsal-ventral patterning, explain approximately 95% of Nail-Patella syndrome cases. However, 5% of cases remain unexplained. METHODS: Here, we present exome sequencing and analysis of four generations of a family with a dominantly inherited Nail-Patella-like disorder (nail dysplasia with some features of Nail-Patella syndrome) who tested negative for LMX1B mutation. RESULTS: We identify a loss-of-function mutation in WIF1 (NM_007191 p.W15*), which is involved in mesoderm segmentation, as the suspected cause of the Nail-Patella-like disorder observed in this family. CONCLUSIONS: Mutation of WIF1 is a potential novel cause of a Nail-Patella-like disorder. Testing of additional patients negative for LMX1B mutation is needed to confirm this finding and further clarify the phenotype.Genet Med advance online publication 06 April 2017.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Nail-Patella Syndrome/genetics , Repressor Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adolescent , Adult , Aged , Female , Humans , Kidney/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Male , Mutation , Nail-Patella Syndrome/metabolism , Patella , Pedigree , Phenotype , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Genet Med ; 17(12): 995-1001, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25790160

ABSTRACT

PURPOSE: The Scripps Idiopathic Diseases of Man (IDIOM) study aims to discover novel gene-disease relationships and provide molecular genetic diagnosis and treatment guidance for individuals with novel diseases using genome sequencing integrated with clinical assessment and multidisciplinary case review. Here we describe the operational protocol and initial results of the IDIOM study. METHODS: A total of 121 cases underwent first-tier review by the principal investigators to determine whether the primary inclusion criteria were satisfied, 59 (48.8%) underwent second-tier review by our clinician-scientist review panel, and 17 patients (14.0%) and their family members were enrolled. RESULTS: 60% of cases resulted in a plausible molecular diagnosis, and 18% of cases resulted in a confirmed molecular diagnosis. Two of three confirmed cases led to the identification of novel gene-disease relationships. In the third confirmed case a previously described but unrecognized disease was revealed. In all three confirmed cases a new clinical management strategy was initiated based on the genetic findings. CONCLUSION: Genome sequencing provides tangible clinical benefit for individuals with idiopathic genetic disease, not only in the context of molecular genetic diagnosis of known rare conditions but also in cases where prior clinical information regarding a new genetic disorder is lacking.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genome, Human , Pathology, Molecular , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Diseases, Inborn/therapy , Genomics , Humans , Infant , Male , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Sequence Analysis, DNA , Young Adult
7.
Ann Neurol ; 75(4): 542-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24700542

ABSTRACT

OBJECTIVE: To identify the cause of childhood onset involuntary paroxysmal choreiform and dystonic movements in 2 unrelated sporadic cases and to investigate the functional effect of missense mutations in adenylyl cyclase 5 (ADCY5) in sporadic and inherited cases of autosomal dominant familial dyskinesia with facial myokymia (FDFM). METHODS: Whole exome sequencing was performed on 2 parent-child trios. The effect of mutations in ADCY5 was studied by measurement of cyclic adenosine monophosphate (cAMP) accumulation under stimulatory and inhibitory conditions. RESULTS: The same de novo mutation (c.1252C>T, p.R418W) in ADCY5 was found in both studied cases. An inherited missense mutation (c.2176G>A, p.A726T) in ADCY5 was previously reported in a family with FDFM. The significant phenotypic overlap with FDFM was recognized in both cases only after discovery of the molecular link. The inherited mutation in the FDFM family and the recurrent de novo mutation affect residues in different protein domains, the first cytoplasmic domain and the first membrane-spanning domain, respectively. Functional studies revealed a statistically significant increase in ß-receptor agonist-stimulated intracellular cAMP consistent with an increase in adenylyl cyclase activity for both mutants relative to wild-type protein, indicative of a gain-of-function effect. INTERPRETATION: FDFM is likely caused by gain-of-function mutations in different domains of ADCY5-the first definitive link between adenylyl cyclase mutation and human disease. We have illustrated the power of hypothesis-free exome sequencing in establishing diagnoses in rare disorders with complex and variable phenotype. Mutations in ADCY5 should be considered in patients with undiagnosed complex movement disorders even in the absence of a family history.


Subject(s)
Adenylyl Cyclases/genetics , Dystonic Disorders/genetics , Facial Nerve Diseases/genetics , Mutation, Missense/genetics , Adenylyl Cyclases/metabolism , Adolescent , Cyclic AMP/metabolism , Dystonic Disorders/complications , Facial Nerve Diseases/complications , Female , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Models, Molecular , Mutagenesis, Site-Directed , Transfection
8.
Phys Biol ; 11(1): 016002, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24406475

ABSTRACT

Elevated levels of circulating endothelial cells (CECs) occur in response to various pathological conditions including myocardial infarction (MI). Here, we adapted a fluid phase biopsy technology platform that successfully detects circulating tumor cells in the blood of cancer patients (HD-CTC assay), to create a high-definition circulating endothelial cell (HD-CEC) assay for the detection and characterization of CECs. Peripheral blood samples were collected from 79 MI patients, 25 healthy controls and six patients undergoing vascular surgery (VS). CECs were defined by positive staining for DAPI, CD146 and von Willebrand Factor and negative staining for CD45. In addition, CECs exhibited distinct morphological features that enable differentiation from surrounding white blood cells. CECs were found both as individual cells and as aggregates. CEC numbers were higher in MI patients compared with healthy controls. VS patients had lower CEC counts when compared with MI patients but were not different from healthy controls. Both HD-CEC and CellSearch® assays could discriminate MI patients from healthy controls with comparable accuracy but the HD-CEC assay exhibited higher specificity while maintaining high sensitivity. Our HD-CEC assay may be used as a robust diagnostic biomarker in MI patients.


Subject(s)
Biopsy/methods , Endothelial Cells/pathology , Myocardial Infarction/blood , Myocardial Infarction/pathology , Cell Count , Humans , Myocardial Infarction/diagnosis , Sensitivity and Specificity
9.
medRxiv ; 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33564781

ABSTRACT

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.

10.
Genome Med ; 11(1): 83, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31847883

ABSTRACT

BACKGROUND: Whole-exome sequencing (WES) has become an efficient diagnostic test for patients with likely monogenic conditions such as rare idiopathic diseases or sudden unexplained death. Yet, many cases remain undiagnosed. Here, we report the added diagnostic yield achieved for 101 WES cases re-analyzed 1 to 7 years after initial analysis. METHODS: Of the 101 WES cases, 51 were rare idiopathic disease cases and 50 were postmortem "molecular autopsy" cases of early sudden unexplained death. Variants considered for reporting were prioritized and classified into three groups: (1) diagnostic variants, pathogenic and likely pathogenic variants in genes known to cause the phenotype of interest; (2) possibly diagnostic variants, possibly pathogenic variants in genes known to cause the phenotype of interest or pathogenic variants in genes possibly causing the phenotype of interest; and (3) variants of uncertain diagnostic significance, potentially deleterious variants in genes possibly causing the phenotype of interest. RESULTS: Initial analysis revealed diagnostic variants in 13 rare disease cases (25.4%) and 5 sudden death cases (10%). Re-analysis resulted in the identification of additional diagnostic variants in 3 rare disease cases (5.9%) and 1 sudden unexplained death case (2%), which increased our molecular diagnostic yield to 31.4% and 12%, respectively. CONCLUSIONS: The basis of new findings ranged from improvement in variant classification tools, updated genetic databases, and updated clinical phenotypes. Our findings highlight the potential for re-analysis to reveal diagnostic variants in cases that remain undiagnosed after initial WES.


Subject(s)
Death, Sudden , Exome Sequencing , Exome/genetics , Rare Diseases/diagnosis , Adenosine Deaminase/genetics , Child , Child, Preschool , Databases, Genetic , Female , Genetic Variation , Humans , Male , Myosin Light Chains/genetics , Nucleotidases/genetics , Phenotype , Rare Diseases/genetics , Rare Diseases/pathology , Ubiquitin-Protein Ligases/genetics , Young Adult
11.
Per Med ; 14(1): 17-25, 2017 01.
Article in English | MEDLINE | ID: mdl-29749824

ABSTRACT

This study assessed perspectives on whole-genome sequencing (WGS) for rare disease diagnosis and the process of receiving genetic results. Semistructured interviews were conducted with adult patients and parents of minor patients affected by idiopathic diseases (n = 10 cases). Three main themes were identified through qualitative data analysis and interpretation: perceived benefits of WGS; perceived drawbacks of WGS; and perceptions of the return of results from WGS. Findings suggest that patients and their families have important perspectives on the use of WGS in diagnostic odyssey cases. These perspectives could inform clinical sequencing research study designs as well as the appropriate deployment of patient and family support services in the context of clinical genome sequencing.


Subject(s)
Genetic Testing/ethics , Precision Medicine/psychology , Rare Diseases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Attitude to Health , Child , Exome , Female , Genetic Testing/methods , Genome, Human , Humans , Male , Middle Aged , Patient Satisfaction , Rare Diseases/diagnosis , Sequence Analysis, DNA/methods , Whole Genome Sequencing/ethics
13.
Front Cardiovasc Med ; 4: 72, 2017.
Article in English | MEDLINE | ID: mdl-29181379

ABSTRACT

The Scripps molecular autopsy study seeks to incorporate genetic testing into the postmortem examination of cases of sudden death in the young (<45 years old). Here, we describe the results from the first 2 years of the study, which consisted of whole exome sequencing (WES) of a cohort of 50 cases predominantly from San Diego County. Apart from the individual description of cases, we analyzed the data at the cohort-level, which brought new perspectives on the genetic causes of sudden death. We investigated the advantages and disadvantages of using WES compared to a gene panel for cardiac disease (usually the first genetic test used by medical examiners). In an attempt to connect complex clinical phenotypes with genotypes, we classified samples by their genetic fingerprint. Finally, we studied the benefits of analyzing the mitochondrial DNA genome. In this regard, we found that half of the cases clinically diagnosed as sudden infant death syndrome had an increased ratio of heteroplasmic variants, and that the variants were also present in the mothers. We believe that community-based data aggregation and sharing will eventually lead to an improved classification of variants. Allele frequencies for the all cases can be accessed via our genomics browser at https://genomics.scripps.edu/browser.

14.
Am J Med ; 127(1): 95.e11-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24384108

ABSTRACT

BACKGROUND: Cardiac arrhythmias are remarkably common and routinely go undiagnosed because they are often transient and asymptomatic. Effective diagnosis and treatment can substantially reduce the morbidity and mortality associated with cardiac arrhythmias. The Zio Patch (iRhythm Technologies, Inc, San Francisco, Calif) is a novel, single-lead electrocardiographic (ECG), lightweight, Food and Drug Administration-cleared, continuously recording ambulatory adhesive patch monitor suitable for detecting cardiac arrhythmias in patients referred for ambulatory ECG monitoring. METHODS: A total of 146 patients referred for evaluation of cardiac arrhythmia underwent simultaneous ambulatory ECG recording with a conventional 24-hour Holter monitor and a 14-day adhesive patch monitor. The primary outcome of the study was to compare the detection arrhythmia events over total wear time for both devices. Arrhythmia events were defined as detection of any 1 of 6 arrhythmias, including supraventricular tachycardia, atrial fibrillation/flutter, pause greater than 3 seconds, atrioventricular block, ventricular tachycardia, or polymorphic ventricular tachycardia/ventricular fibrillation. McNemar's tests were used to compare the matched pairs of data from the Holter and the adhesive patch monitor. RESULTS: Over the total wear time of both devices, the adhesive patch monitor detected 96 arrhythmia events compared with 61 arrhythmia events by the Holter monitor (P < .001). CONCLUSIONS: Over the total wear time of both devices, the adhesive patch monitor detected more events than the Holter monitor. Prolonged duration monitoring for detection of arrhythmia events using single-lead, less-obtrusive, adhesive-patch monitoring platforms could replace conventional Holter monitoring in patients referred for ambulatory ECG monitoring.


Subject(s)
Arrhythmias, Cardiac/diagnosis , Electrocardiography, Ambulatory , Electrocardiography/methods , Adhesives , Adult , Aged , Arrhythmias, Cardiac/physiopathology , Atrial Fibrillation/diagnosis , Atrial Flutter/diagnosis , Atrioventricular Block/diagnosis , Equipment Design , Female , Humans , Male , Middle Aged , Patient Satisfaction , Tachycardia, Supraventricular/diagnosis , Tachycardia, Ventricular/diagnosis , Time Factors , Ventricular Fibrillation/diagnosis
15.
Sci Transl Med ; 4(126): 126ra33, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22440735

ABSTRACT

Acute myocardial infarction (MI), which involves the rupture of existing atheromatous plaque, remains highly unpredictable despite recent advances in the diagnosis and treatment of coronary artery disease. Accordingly, a clinical measurement that can predict an impending MI is desperately needed. Here, we characterize circulating endothelial cells (CECs) using an automated and clinically feasible CEC three-channel fluorescence microscopy assay in 50 consecutive patients with ST-segment elevation MI and 44 consecutive healthy controls. CEC counts were significantly elevated in MI cases versus controls, with median numbers of 19 and 4 cells/ml, respectively (P = 1.1 × 10(-10)). A receiver-operating characteristic (ROC) curve analysis demonstrated an area under the ROC curve of 0.95, suggesting near-dichotomization of MI cases versus controls. We observed no correlation between CECs and typical markers of myocardial necrosis (ρ = 0.02, creatine kinase-myocardial band; ρ = -0.03, troponin). Morphological analysis of the microscopy images of CECs revealed a 2.5-fold increase (P < 0.0001) in cellular area and a twofold increase (P < 0.0001) in nuclear area of MI CECs versus healthy controls, age-matched CECs, as well as CECs obtained from patients with preexisting peripheral vascular disease. The distribution of CEC images that contained from 2 to 10 nuclei demonstrates that MI patients were the only subject group to contain more than 3 nuclei per image, indicating that multicellular and multinuclear clusters are specific for acute MI. These data indicate that CEC counts may serve as a promising clinical measure for the prediction of atherosclerotic plaque rupture events.


Subject(s)
Cell Movement , Endothelial Cells , Myocardial Infarction/pathology , Adult , Aged , Aged, 80 and over , Arteries/injuries , Arteries/pathology , Biomarkers/metabolism , Case-Control Studies , Cell Count , Cell Nucleus/pathology , Cell Shape , Cell Size , Endothelial Cells/cytology , Endothelial Cells/pathology , Female , Humans , Male , Microscopy, Fluorescence , Middle Aged , Necrosis , Phenotype
16.
Science ; 302(5650): 1578-81, 2003 Nov 28.
Article in English | MEDLINE | ID: mdl-14645853

ABSTRACT

The early genetic pathway(s) triggering the pathogenesis of coronary artery disease (CAD) and myocardial infarction (MI) remain largely unknown. Here, we describe an autosomal dominant form of CAD/MI (adCAD1) that is caused by the deletion of seven amino acids in transcription factor MEF2A. The deletion disrupts nuclear localization of MEF2A, reduces MEF2A-mediated transcription activation, and abolishes synergistic activation by MEF2A and by the transcription factor GATA-1 through a dominant-negative mechanism. The MEF2A protein demonstrates strong expression in the endothelium of coronary arteries. These results identify a pathogenic gene for a familial vascular disease with features of CAD and implicate the MEF2A signaling pathway in the pathogenesis of CAD/MI.


Subject(s)
Coronary Artery Disease/genetics , DNA-Binding Proteins/genetics , Myocardial Infarction/genetics , Sequence Deletion , Transcription Factors/genetics , Aged , Amino Acid Sequence , Animals , Arteries/metabolism , Base Sequence , Cell Nucleus/metabolism , Chromosomes, Human, Pair 15/genetics , Coronary Artery Disease/metabolism , Coronary Vessels/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Dimerization , Endothelium, Vascular/metabolism , Erythroid-Specific DNA-Binding Factors , Female , Fluorescent Antibody Technique , GATA1 Transcription Factor , Gene Expression , Genes, Dominant , Genetic Linkage , Genetic Markers , Genetic Predisposition to Disease , Humans , MADS Domain Proteins , MEF2 Transcription Factors , Male , Middle Aged , Molecular Sequence Data , Muscle, Smooth/cytology , Muscle, Smooth/metabolism , Myocardial Infarction/metabolism , Myogenic Regulatory Factors , Pedigree , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Protein Transport , Rats , Risk Factors , Signal Transduction , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL