Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Glob Chang Biol ; 26(4): 2390-2402, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32017317

ABSTRACT

Several lines of evidence point to an increase in the activity of the terrestrial biosphere over recent decades, impacting the global net land carbon sink (NLS) and its control on the growth of atmospheric carbon dioxide (ca ). Global terrestrial gross primary production (GPP)-the rate of carbon fixation by photosynthesis-is estimated to have risen by (31 ± 5)% since 1900, but the relative contributions of different putative drivers to this increase are not well known. Here we identify the rising atmospheric CO2 concentration as the dominant driver. We reconcile leaf-level and global atmospheric constraints on trends in modeled biospheric activity to reveal a global CO2 fertilization effect on photosynthesis of 30% since 1900, or 47% for a doubling of ca above the pre-industrial level. Our historic value is nearly twice as high as current estimates (17 ± 4)% that do not use the full range of available constraints. Consequently, under a future low-emission scenario, we project a land carbon sink (174 PgC, 2006-2099) that is 57 PgC larger than if a lower CO2 fertilization effect comparable with current estimates is assumed. These findings suggest a larger beneficial role of the land carbon sink in modulating future excess anthropogenic CO2 consistent with the target of the Paris Agreement to stay below 2°C warming, and underscore the importance of preserving terrestrial carbon sinks.

2.
Atmos Chem Phys ; 22(14): 9601-9616, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-39315358

ABSTRACT

Global emissions of the ozone-depleting gas HCFC-141b (1,1-dichloro-1-fluoroethane, CH3CCl2F) derived from measurements of atmospheric mole fractions increased between 2017 and 2021 despite a fall in reported production and consumption of HCFC-141b for dispersive uses. HCFC-141b is a controlled substance under the Montreal Protocol, and its phase-out is currently underway, after a peak in reported consumption and production in developing (Article 5) countries in 2013. If reported production and consumption are correct, our study suggests that the 2017-2021 rise is due to an increase in emissions from the bank when appliances containing HCFC-141b reach the end of their life, or from production of HCFC-141b not reported for dispersive uses. Regional emissions have been estimated between 2017-2020 for all regions where measurements have sufficient sensitivity to emissions. This includes the regions of northwestern Europe, east Asia, the United States and Australia, where emissions decreased by a total of 2.3 ± 4.6 Ggyr-1, compared to a mean global increase of 3.0 ± 1.2 Ggyr-1 over the same period. Collectively these regions only account for around 30% of global emissions in 2020. We are not able to pinpoint the source regions or specific activities responsible for the recent global emission rise.

SELECTION OF CITATIONS
SEARCH DETAIL