Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Cell ; 187(17): 4605-4620.e17, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38959891

ABSTRACT

The ability of mitochondria to coordinate stress responses across tissues is critical for health. In C. elegans, neurons experiencing mitochondrial stress elicit an inter-tissue signaling pathway through the release of mitokine signals, such as serotonin or the Wnt ligand EGL-20, which activate the mitochondrial unfolded protein response (UPRMT) in the periphery to promote organismal health and lifespan. We find that germline mitochondria play a surprising role in neuron-to-periphery UPRMT signaling. Specifically, we find that germline mitochondria signal downstream of neuronal mitokines, Wnt and serotonin, and upstream of lipid metabolic pathways in the periphery to regulate UPRMT activation. We also find that the germline tissue itself is essential for UPRMT signaling. We propose that the germline has a central signaling role in coordinating mitochondrial stress responses across tissues, and germline mitochondria play a defining role in this coordination because of their inherent roles in germline integrity and inter-tissue signaling.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Germ Cells , Mitochondria , Signal Transduction , Unfolded Protein Response , Animals , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Caenorhabditis elegans Proteins/metabolism , Germ Cells/metabolism , Neurons/metabolism , Serotonin/metabolism , Wnt Proteins/metabolism
2.
Cell ; 187(16): 4289-4304.e26, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38942015

ABSTRACT

Cellular homeostasis is intricately influenced by stimuli from the microenvironment, including signaling molecules, metabolites, and pathogens. Functioning as a signaling hub within the cell, mitochondria integrate information from various intracellular compartments to regulate cellular signaling and metabolism. Multiple studies have shown that mitochondria may respond to various extracellular signaling events. However, it is less clear how changes in the extracellular matrix (ECM) can impact mitochondrial homeostasis to regulate animal physiology. We find that ECM remodeling alters mitochondrial homeostasis in an evolutionarily conserved manner. Mechanistically, ECM remodeling triggers a TGF-ß response to induce mitochondrial fission and the unfolded protein response of the mitochondria (UPRMT). At the organismal level, ECM remodeling promotes defense of animals against pathogens through enhanced mitochondrial stress responses. We postulate that this ECM-mitochondria crosstalk represents an ancient immune pathway, which detects infection- or mechanical-stress-induced ECM damage, thereby initiating adaptive mitochondria-based immune and metabolic responses.


Subject(s)
Extracellular Matrix , Homeostasis , Mitochondria , Unfolded Protein Response , Extracellular Matrix/metabolism , Animals , Mitochondria/metabolism , Humans , Transforming Growth Factor beta/metabolism , Mitochondrial Dynamics , Mice , Signal Transduction , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/immunology
3.
Nature ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358505

ABSTRACT

Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.

4.
Nat Chem Biol ; 15(10): 949-958, 2019 10.
Article in English | MEDLINE | ID: mdl-31451760

ABSTRACT

Antibody-drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine-citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.


Subject(s)
CRISPR-Cas Systems , Genome-Wide Association Study , Immunoconjugates/toxicity , Maytansine/analogs & derivatives , N-Acetylneuraminic Acid/pharmacology , Trastuzumab/pharmacology , Ado-Trastuzumab Emtansine , Antineoplastic Agents, Immunological/pharmacology , Carrier Proteins , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Lysosomes , Maytansine/pharmacology
5.
bioRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-37961200

ABSTRACT

Glycans play critical roles in cellular signaling and function. Unlike proteins, glycan structures are not templated from genes but the concerted activity of many genes, making them historically challenging to study. Here, we present a strategy that utilizes pooled CRISPR screens and lectin microarrays to uncover and characterize regulators of cell surface glycosylation. We applied this approach to study the regulation of high mannose glycans - the starting structure of all asparagine(N)-linked-glycans. We used CRISPR screens to uncover the expanded network of genes controlling high mannose surface levels, followed by lectin microarrays to fully measure the complex effect of select regulators on glycosylation globally. Through this, we elucidated how two novel high mannose regulators - TM9SF3 and the CCC complex - control complex N-glycosylation via regulating Golgi morphology and function. Notably, this method allowed us to interrogate Golgi function in-depth and reveal that similar disruption to Golgi morphology can lead to drastically different glycosylation outcomes. Collectively, this work demonstrates a generalizable approach for systematically dissecting the regulatory network underlying glycosylation.

6.
Elife ; 122023 07 25.
Article in English | MEDLINE | ID: mdl-37489956

ABSTRACT

Changes in lipid metabolism are associated with aging and age-related diseases, including proteopathies. The endoplasmic reticulum (ER) is uniquely a major hub for protein and lipid synthesis, making its function essential for both protein and lipid homeostasis. However, it is less clear how lipid metabolism and protein quality may impact each other. Here, we identified let-767, a putative hydroxysteroid dehydrogenase in Caenorhabditis elegans, as an essential gene for both lipid and ER protein homeostasis. Knockdown of let-767 reduces lipid stores, alters ER morphology in a lipid-dependent manner, and blocks induction of the Unfolded Protein Response of the ER (UPRER). Interestingly, a global reduction in lipogenic pathways restores UPRER induction in animals with reduced let-767. Specifically, we find that supplementation of 3-oxoacyl, the predicted metabolite directly upstream of let-767, is sufficient to block induction of the UPRER. This study highlights a novel interaction through which changes in lipid metabolism can alter a cell's response to protein-induced stress.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Animals , Aging , Caenorhabditis elegans , Homeostasis , Lipids
7.
Aging Cell ; 22(1): e13742, 2023 01.
Article in English | MEDLINE | ID: mdl-36404134

ABSTRACT

The actin cytoskeleton is a three-dimensional scaffold of proteins that is a regulatory, energyconsuming network with dynamic properties to shape the structure and function of the cell. Proper actin function is required for many cellular pathways, including cell division, autophagy, chaperone function, endocytosis, and exocytosis. Deterioration of these processes manifests during aging and exposure to stress, which is in part due to the breakdown of the actin cytoskeleton. However, the regulatory mechanisms involved in preservation of cytoskeletal form and function are not well-understood. Here, we performed a multipronged, cross-organismal screen combining a whole-genome CRISPR-Cas9 screen in human fibroblasts with in vivo Caenorhabditis elegans synthetic lethality screening. We identified the bromodomain protein, BET-1, as a key regulator of actin function and longevity. Overexpression of bet-1 preserves actin function at late age and promotes life span and healthspan in C. elegans. These beneficial effects are mediated through actin preservation by the transcriptional regulator function of BET-1. Together, our discovery assigns a key role for BET-1 in cytoskeletal health, highlighting regulatory cellular networks promoting cytoskeletal homeostasis.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Humans , Longevity/genetics , Actins/genetics , Actins/metabolism , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cytoskeleton/metabolism , Actin Cytoskeleton/metabolism
8.
Cell Metab ; 33(6): 1067-1069, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34077712

ABSTRACT

Skeletal muscle secretes numerous systemic factors, termed myokines, which can regulate homeostasis of distal tissues. In this issue, Rai et al. (2021) identify and characterize a novel myokine, Amyrel, which is secreted under muscle proteasome stress and protects central nervous system health and function by enhancing protein quality control during aging.


Subject(s)
Cytokines , Muscle, Skeletal , Brain/metabolism , Cytokines/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism
9.
Nat Commun ; 12(1): 4969, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404787

ABSTRACT

Multimeric cytoskeletal protein complexes orchestrate normal cellular function. However, protein-complex distributions in stressed, heterogeneous cell populations remain unknown. Cell staining and proximity-based methods have limited selectivity and/or sensitivity for endogenous multimeric protein-complex quantification from single cells. We introduce micro-arrayed, differential detergent fractionation to simultaneously detect protein complexes in hundreds of individual cells. Fractionation occurs by 60 s size-exclusion electrophoresis with protein complex-stabilizing buffer that minimizes depolymerization. Proteins are measured with a ~5-hour immunoassay. Co-detection of cytoskeletal protein complexes in U2OS cells treated with filamentous actin (F-actin) destabilizing Latrunculin A detects a unique subpopulation (~2%) exhibiting downregulated F-actin, but upregulated microtubules. Thus, some cells may upregulate other cytoskeletal complexes to counteract the stress of Latrunculin A treatment. We also sought to understand the effect of non-chemical stress on cellular heterogeneity of F-actin. We find heat shock may dysregulate filamentous and globular actin correlation. In this work, our assay overcomes selectivity limitations to biochemically quantify single-cell protein complexes perturbed with diverse stimuli.


Subject(s)
Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Genetic Heterogeneity , Actins/genetics , Actins/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Differentiation , Cell Line , Heat-Shock Response , Humans , Microtubules/metabolism , Models, Biological , Single-Cell Analysis/methods , Thiazolidines/pharmacology
10.
PLoS One ; 16(8): e0255690, 2021.
Article in English | MEDLINE | ID: mdl-34351984

ABSTRACT

Saliva is an attractive specimen type for asymptomatic surveillance of COVID-19 in large populations due to its ease of collection and its demonstrated utility for detecting RNA from SARS-CoV-2. Multiple saliva-based viral detection protocols use a direct-to-RT-qPCR approach that eliminates nucleic acid extraction but can reduce viral RNA detection sensitivity. To improve test sensitivity while maintaining speed, we developed a robotic nucleic acid extraction method for detecting SARS-CoV-2 RNA in saliva samples with high throughput. Using this assay, the Free Asymptomatic Saliva Testing (IGI FAST) research study on the UC Berkeley campus conducted 11,971 tests on supervised self-collected saliva samples and identified rare positive specimens containing SARS-CoV-2 RNA during a time of low infection prevalence. In an attempt to increase testing capacity, we further adapted our robotic extraction assay to process pooled saliva samples. We also benchmarked our assay against nasopharyngeal swab specimens and found saliva methods require further optimization to match this gold standard. Finally, we designed and validated a RT-qPCR test suitable for saliva self-collection. These results establish a robotic extraction-based procedure for rapid PCR-based saliva testing that is suitable for samples from both symptomatic and asymptomatic individuals.


Subject(s)
COVID-19 Testing/methods , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Adult , COVID-19/diagnosis , Female , Humans , Male , Mass Screening/methods , RNA/genetics , RNA/isolation & purification , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Robotics/methods , Saliva/chemistry , Specimen Handling/methods
11.
Sci Adv ; 7(44): eabj6818, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714674

ABSTRACT

The dysfunction of mitochondria is associated with the physiological consequences of aging and many age-related diseases. Therefore, critical quality control mechanisms exist to protect mitochondrial functions, including the unfolded protein response of the mitochondria (UPRMT). However, it is still unclear how UPRMT is regulated in mammals with mechanistic discrepancies between previous studies. Here, we reasoned that a study of conserved mechanisms could provide a uniquely powerful way to reveal previously uncharacterized components of the mammalian UPRMT. We performed cross-species comparison of genetic requirements for survival under­and in response to­mitochondrial stress between karyotypically normal human stem cells and the nematode Caenorhabditis elegans. We identified a role for EPS-8/EPS8 (epidermal growth factor receptor pathway substrate 8), a signaling protein adaptor, in general mitochondrial homeostasis and UPRMT regulation through integrin-mediated remodeling of the actin cytoskeleton. This study also highlights the use of cross-species comparisons in genetic screens to interrogate cellular pathways.

12.
medRxiv ; 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33532798

ABSTRACT

Saliva is an attractive specimen type for asymptomatic surveillance of COVID-19 in large populations due to its ease of collection and its demonstrated utility for detecting RNA from SARS-CoV-2. Multiple saliva-based viral detection protocols use a direct-to-RT-qPCR approach that eliminates nucleic acid extraction but can reduce viral RNA detection sensitivity. To improve test sensitivity while maintaining speed, we developed a robotic nucleic acid extraction method for detecting SARS-CoV-2 RNA in saliva samples with high throughput. Using this assay, the Free Asymptomatic Saliva Testing (IGI-FAST) research study on the UC Berkeley campus conducted 11,971 tests on supervised self-collected saliva samples and identified rare positive specimens containing SARS-CoV-2 RNA during a time of low infection prevalence. In an attempt to increase testing capacity, we further adapted our robotic extraction assay to process pooled saliva samples. We also benchmarked our assay against the gold standard, nasopharyngeal swab specimens. Finally, we designed and validated a RT-qPCR test suitable for saliva self-collection. These results establish a robotic extraction-based procedure for rapid PCR-based saliva testing that is suitable for samples from both symptomatic and asymptomatic individuals.

13.
PLoS One ; 16(11): e0258263, 2021.
Article in English | MEDLINE | ID: mdl-34758033

ABSTRACT

Clinical and surveillance testing for the SARS-CoV-2 virus relies overwhelmingly on RT-qPCR-based diagnostics, yet several popular assays require 2-3 separate reactions or rely on detection of a single viral target, which adds significant time, cost, and risk of false-negative results. Furthermore, multiplexed RT-qPCR tests that detect at least two SARS-CoV-2 genes in a single reaction are typically not affordable for large scale clinical surveillance or adaptable to multiple PCR machines and plate layouts. We developed a RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (LuNER) to address these shortcomings and meet the testing demands of a university campus and the local community. This cost-effective test is compatible with BioRad or Applied Biosystems qPCR machines, in 96 and 384-well formats, with or without sample pooling, and has a detection sensitivity suitable for both clinical reporting and wastewater surveillance efforts.


Subject(s)
COVID-19/virology , Ribonuclease P/genetics , SARS-CoV-2/genetics , Wastewater/virology , DNA Primers/genetics , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity , Specimen Handling/methods , Wastewater-Based Epidemiological Monitoring
14.
Clin Cancer Res ; 26(4): 775-786, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31582515

ABSTRACT

Efficacy data from the KATHERINE clinical trial, comparing the HER2-directed antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1) to trastuzumab in patients with early-stage HER2-amplified/overexpressing breast cancer with residual disease after neoadjuvant therapy, demonstrates superiority of T-DM1 (HR for invasive disease or death, 0.50; P < 0.001). This establishes foundational precedent for ADCs as effective therapy for treatment of subclinical micrometastasis in an adjuvant (or post-neoadjuvant) early-stage solid tumor setting. Despite this achievement, general principles from proposed systems pharmacokinetic modeling for intracellular processing of ADCs indicate potential shortcomings of T-DM1: (i) C max limited by toxicities; (ii) slow internalization rate; (iii) resistance mechanisms due to defects in intracellular trafficking [loss of lysosomal transporter solute carrier family 46 member 3, (SLC46A3)], and increased expression of drug transporters MDR1 and MRP1; and (iv) lack of payload bystander effects limiting utility in tumors with heterogeneous HER2 expression. These handicaps may explain the inferiority of T-DM1-based therapy in the neoadjuvant and first-line metastatic HER2+ breast cancer settings, and lack of superiority to chemotherapy in HER2+ advanced gastric cancer. In this review, we discuss how each of these limitations is being addressed by manipulating internalization and trafficking using HER2:HER2 bispecific or biparatopic antibody backbones, using site-specific, fixed DAR conjugation chemistry, and payload swapping to exploit alternative intracellular targets and to promote bystander effects. Newer HER2-directed ADCs have impressive clinical activity even against tumors with lower levels of HER2 receptor expression. Finally, we highlight ongoing clinical efforts to combine HER2 ADCs with other treatment modalities, including chemotherapy, molecularly targeted therapies, and immunotherapy.


Subject(s)
Ado-Trastuzumab Emtansine/therapeutic use , Breast Neoplasms/drug therapy , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Receptor, ErbB-2/biosynthesis , Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/enzymology , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Clinical Trials as Topic , Drug Development , Drug Resistance, Neoplasm , Female , Gene Amplification , Humans , Molecular Targeted Therapy/methods , Randomized Controlled Trials as Topic , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Tissue Distribution
15.
Sci Adv ; 6(29): eabb9614, 2020 07.
Article in English | MEDLINE | ID: mdl-32832649

ABSTRACT

The endoplasmic reticulum (ER) is commonly referred to as the factory of the cell, as it is responsible for a large amount of protein and lipid synthesis. As a membrane-bound organelle, the ER has a distinct environment that is ideal for its functions in synthesizing these primary cellular components. Many different quality control machineries exist to maintain ER stability under the stresses associated with synthesizing, folding, and modifying complex proteins and lipids. The best understood of these mechanisms is the unfolded protein response of the ER (UPRER), in which transmembrane proteins serve as sensors, which trigger a coordinated transcriptional response of genes dedicated for mitigating the stress. As the name suggests, the UPRER is most well described as a functional response to protein misfolding stress. Here, we focus on recent findings and emerging themes in additional roles of the UPRER outside of protein homeostasis, including lipid homeostasis, autophagy, apoptosis, and immunity.

16.
medRxiv ; 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33330883

ABSTRACT

Commonly used RT-qPCR-based SARS-CoV-2 diagnostics require 2-3 separate reactions or rely on detection of a single viral target, adding time and cost or risk of false-negative results. Currently, no test combines detection of widely used SARS-CoV-2 E- and N-gene targets and a sample control in a single, multiplexed reaction. We developed the IGI-LuNER RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (NER). This combined, cost-effective test can be performed in 384-well plates with detection sensitivity suitable for clinical reporting, and will aid in future sample pooling efforts, thus improving throughput of SARS-CoV-2 detection.

17.
Elife ; 82019 11 01.
Article in English | MEDLINE | ID: mdl-31674906

ABSTRACT

The small molecule Retro-2 prevents ricin toxicity through a poorly-defined mechanism of action (MOA), which involves halting retrograde vesicle transport to the endoplasmic reticulum (ER). CRISPRi genetic interaction analysis revealed Retro-2 activity resembles disruption of the transmembrane domain recognition complex (TRC) pathway, which mediates post-translational ER-targeting and insertion of tail-anchored (TA) proteins, including SNAREs required for retrograde transport. Cell-based and in vitro assays show that Retro-2 blocks delivery of newly-synthesized TA-proteins to the ER-targeting factor ASNA1 (TRC40). An ASNA1 point mutant identified using CRISPR-mediated mutagenesis abolishes both the cytoprotective effect of Retro-2 against ricin and its inhibitory effect on ASNA1-mediated ER-targeting. Together, our work explains how Retro-2 prevents retrograde trafficking of toxins by inhibiting TA-protein targeting, describes a general CRISPR strategy for predicting the MOA of small molecules, and paves the way for drugging the TRC pathway to treat broad classes of viruses known to be inhibited by Retro-2.


Subject(s)
Arsenite Transporting ATPases/antagonists & inhibitors , Benzamides/pharmacology , Endoplasmic Reticulum/drug effects , Ricin/toxicity , Thiophenes/pharmacology , Arsenite Transporting ATPases/genetics , Endoplasmic Reticulum/metabolism , Humans , Membrane Proteins/metabolism , Protein Transport
18.
Elife ; 72018 03 07.
Article in English | MEDLINE | ID: mdl-29513217

ABSTRACT

Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.


Subject(s)
Drosophila Proteins/genetics , Netrins/genetics , Neurogenesis/genetics , Neurons/metabolism , Transcription Factors/genetics , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Gene Expression Regulation, Developmental , Medulla Oblongata/growth & development , Medulla Oblongata/metabolism , Nerve Net/growth & development , Photoreceptor Cells, Invertebrate/metabolism , Synapses/genetics , Visual Pathways/growth & development
19.
Nat Genet ; 50(4): 603-612, 2018 04.
Article in English | MEDLINE | ID: mdl-29507424

ABSTRACT

Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases.


Subject(s)
C9orf72 Protein/genetics , Active Transport, Cell Nucleus/genetics , Amyotrophic Lateral Sclerosis/etiology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , C9orf72 Protein/metabolism , C9orf72 Protein/toxicity , CRISPR-Cas Systems , DNA Repeat Expansion , Endoplasmic Reticulum Stress/genetics , Frontotemporal Dementia/etiology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Gene Knockout Techniques , HeLa Cells , Humans , K562 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Microsatellite Repeats , Motor Neurons/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
20.
Nat Genet ; 50(12): 1716-1727, 2018 12.
Article in English | MEDLINE | ID: mdl-30397336

ABSTRACT

Phagocytosis is required for a broad range of physiological functions, from pathogen defense to tissue homeostasis, but the mechanisms required for phagocytosis of diverse substrates remain incompletely understood. Here, we developed a rapid magnet-based phenotypic screening strategy, and performed eight genome-wide CRISPR screens in human cells to identify genes regulating phagocytosis of distinct substrates. After validating select hits in focused miniscreens, orthogonal assays and primary human macrophages, we show that (1) the previously uncharacterized gene NHLRC2 is a central player in phagocytosis, regulating RhoA-Rac1 signaling cascades that control actin polymerization and filopodia formation, (2) very-long-chain fatty acids are essential for efficient phagocytosis of certain substrates and (3) the previously uncharacterized Alzheimer's disease-associated gene TM2D3 can preferentially influence uptake of amyloid-ß aggregates. These findings illuminate new regulators and core principles of phagocytosis, and more generally establish an efficient method for unbiased identification of cellular uptake mechanisms across diverse physiological and pathological contexts.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Magnetics/methods , Phagocytosis/genetics , Animals , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Expression Regulation , Genetic Association Studies/methods , Genome, Human , High-Throughput Screening Assays/methods , Humans , Mice , RAW 264.7 Cells , Signal Transduction/genetics , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL