Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Eur Radiol ; 29(3): 1153-1163, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30167812

ABSTRACT

OBJECTIVE: To evaluate the performance of quantitative computed tomography (CT) texture analysis using different machine learning (ML) classifiers for discriminating low and high nuclear grade clear cell renal cell carcinomas (cc-RCCs). MATERIALS AND METHODS: This retrospective study included 53 patients with pathologically proven 54 cc-RCCs (31 low-grade [grade 1 or 2]; 23 high-grade [grade 3 or 4]). In one patient, two synchronous cc-RCCs were included in the analysis. Mean age was 57.5 years. Thirty-four (64.1%) patients were male and 19 were female (35.9%). Mean tumour size based on the maximum diameter was 57.4 mm (range, 16-145 mm). Forty patients underwent radical nephrectomy and 13 underwent partial nephrectomy. Following pre-processing steps, two-dimensional CT texture features were extracted using portal-phase contrast-enhanced CT. Reproducibility of texture features was assessed with the intra-class correlation coefficient (ICC). Nested cross-validation with a wrapper-based algorithm was used in feature selection and model optimisation. The ML classifiers were support vector machine (SVM), multilayer perceptron (MLP, a sort of neural network), naïve Bayes, k-nearest neighbours, and random forest. The performance of the classifiers was compared by certain metrics. RESULTS: Among 279 texture features, 241 features with an ICC equal to or higher than 0.80 (excellent reproducibility) were included in the further feature selection process. The best model was created using SVM. The selected subset of features for SVM included five co-occurrence matrix (ICC range, 0.885-0.998), three run-length matrix (ICC range, 0.889-0.992), one gradient (ICC = 0.998), and four Haar wavelet features (ICC range, 0.941-0.997). The overall accuracy, sensitivity (for detecting high-grade cc-RCCs), specificity (for detecting high-grade cc-RCCs), and overall area under the curve of the best model were 85.1%, 91.3%, 80.6%, and 0.860, respectively. CONCLUSIONS: The ML-based CT texture analysis can be a useful and promising non-invasive method for prediction of low and high Fuhrman nuclear grade cc-RCCs. KEY POINTS: • Based on the percutaneous biopsy literature, ML-based CT texture analysis has a comparable predictive performance with percutaneous biopsy. • Highest predictive performance was obtained with use of the SVM. • SVM correctly classified 85.1% of cc-RCCs in terms of nuclear grade, with an AUC of 0.860.


Subject(s)
Algorithms , Carcinoma, Renal Cell/diagnosis , Kidney Neoplasms/diagnosis , Machine Learning , Tomography, X-Ray Computed/methods , Adult , Aged , Bayes Theorem , Biopsy , Carcinoma, Renal Cell/surgery , Data Collection , Diagnosis, Differential , Female , Humans , Kidney Neoplasms/surgery , Male , Middle Aged , Nephrectomy , Reproducibility of Results , Retrospective Studies , Support Vector Machine
2.
Eur J Radiol ; 107: 149-157, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30292260

ABSTRACT

OBJECTIVE: To develop externally validated, reproducible, and generalizable models for distinguishing three major subtypes of renal cell carcinomas (RCCs) using machine learning-based quantitative computed tomography (CT) texture analysis (qCT-TA). MATERIALS AND METHODS: Sixty-eight RCCs were included in this retrospective study for model development and internal validation. Another 26 RCCs were included from public databases (The Cancer Genome Atlas-TCGA) for independent external validation. Following image preparation steps (reconstruction, resampling, normalization, and discretization), 275 texture features were extracted from unenhanced and corticomedullary phase CT images. Feature selection was firstly done with reproducibility analysis by three radiologists, and; then, with a wrapper-based classifier-specific algorithm. A nested cross-validation was performed for feature selection and model optimization. Base classifiers were the artificial neural network (ANN) and support vector machine (SVM). Base classifiers were also combined with three additional algorithms to improve generalizability performance. Classifications were done with the following groups: (i), non-clear cell RCC (non-cc-RCC) versus clear cell RCC (cc-RCC) and (ii), cc-RCC versus papillary cell RCC (pc-RCC) versus chromophobe cell RCC (chc-RCC). Main performance metric for comparisons was the Matthews correlation coefficient (MCC). RESULTS: Number of the reproducible features is smaller for the unenhanced images (93 out of 275) compared to the corticomedullary phase images (232 out of 275). Overall performance metrics of the machine learning-based qCT-TA derived from corticomedullary phase images were better than those of unenhanced images. Using corticomedullary phase images, ANN with adaptive boosting algorithm performed best for discrimination of non-cc-RCCs from cc-RCCs (MCC = 0.728) with an external validation accuracy, sensitivity, and specificity of 84.6%, 69.2%, and 100%, respectively. On the other hand, the performance of the machine learning-based qCT-TA is rather poor for distinguishing three major subtypes. The SVM with bagging algorithm performed best for discrimination of pc-RCC from other RCC subtypes (MCC = 0.804) with an external validation accuracy, sensitivity, and specificity of 69.2%, 71.4%, and 100%, respectively. CONCLUSIONS: Machine learning-based qCT-TA can distinguish non-cc-RCCs from cc-RCCs with a satisfying performance. On the other hand, the performance of the method for distinguishing three major subtypes is rather poor. Corticomedullary phase CT images provide much more valuable texture parameters than unenhanced images.


Subject(s)
Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Algorithms , Carcinoma, Renal Cell/diagnostic imaging , Diagnosis, Differential , Female , Humans , Kidney Neoplasms/diagnostic imaging , Machine Learning , Male , Middle Aged , Multidetector Computed Tomography/methods , Neural Networks, Computer , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL