Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Development ; 151(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007638

ABSTRACT

Vertebrate motile cilia are classified as (9+2) or (9+0), based on the presence or absence of the central pair apparatus, respectively. Cryogenic electron microscopy analyses of (9+2) cilia have uncovered an elaborate axonemal protein composition. The extent to which these features are conserved in (9+0) cilia remains unclear. CFAP53, a key axonemal filamentous microtubule inner protein (fMIP) and a centriolar satellites component, is essential for motility of (9+0), but not (9+2) cilia. Here, we show that in (9+2) cilia, CFAP53 functions redundantly with a paralogous fMIP, MNS1. MNS1 localises to ciliary axonemes, and combined loss of both proteins in zebrafish and mice caused severe outer dynein arm loss from (9+2) cilia, significantly affecting their motility. Using immunoprecipitation, we demonstrate that, whereas MNS1 can associate with itself and CFAP53, CFAP53 is unable to self-associate. We also show that additional axonemal dynein-interacting proteins, two outer dynein arm docking (ODAD) complex members, show differential localisation between types of motile cilia. Together, our findings clarify how paralogous fMIPs, CFAP53 and MNS1, function in regulating (9+2) versus (9+0) cilia motility, and further emphasise extensive structural diversity among these organelles.


Subject(s)
Axoneme , Cilia , Zebrafish , Animals , Cilia/metabolism , Cilia/ultrastructure , Zebrafish/metabolism , Mice , Axoneme/metabolism , Axoneme/ultrastructure , Axonemal Dyneins/metabolism , Axonemal Dyneins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Dyneins/metabolism
2.
PLoS Genet ; 16(12): e1009232, 2020 12.
Article in English | MEDLINE | ID: mdl-33347437

ABSTRACT

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Subject(s)
Axonemal Dyneins/metabolism , Axoneme/metabolism , Biological Transport, Active/genetics , Cell Movement/genetics , Cilia/metabolism , Embryo, Mammalian/metabolism , Microtubules/metabolism , Animals , Axonemal Dyneins/genetics , Axoneme/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cilia/genetics , Embryo, Mammalian/physiology , Embryo, Mammalian/ultrastructure , Ependyma/embryology , Ependyma/metabolism , Ependyma/physiology , Fluorescent Antibody Technique , Genotype , Immunoprecipitation , Mice , Mice, Knockout , Microscopy, Electron, Transmission , Microtubules/genetics , Mutation , Phenotype , Trachea/embryology , Trachea/metabolism , Trachea/physiology , Trachea/ultrastructure
3.
Genes Cells ; 24(11): 731-745, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31554018

ABSTRACT

Cluap1/IFT38 is a ciliary protein that belongs to the IFT-B complex and is required for ciliogenesis. In this study, we have examined the behaviors of Cluap1 protein in nonciliated and ciliated cells. In proliferating cells, Cluap1 is located at the distal appendage of the mother centriole. When cells are induced to form cilia, Cluap1 is found in a novel noncentriolar compartment, the cytoplasmic IFT spot, which mainly exists once in a cell. Other IFT-B proteins such as IFT46 and IFT88 are colocalized in this spot. The cytoplasmic IFT spot is present in mouse embryonic fibroblasts (MEFs) but is absent in ciliogenesis-defective MEFs lacking Cluap1, Kif3a or Odf2. The cytoplasmic IFT spot is also found in mouse embryos but is absent in the Cluap1 mutant embryo. When MEFs are induced to form cilia, the cytoplasmic IFT spot appears at an early step of ciliogenesis but starts to disappear when ciliogenesis is mostly completed. These results suggest that IFT-B proteins such as Cluap1 accumulate in a previously undescribed cytoplasmic compartment during ciliogenesis.


Subject(s)
Cilia/metabolism , Cytoplasm/metabolism , Cytoskeletal Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Cilia/ultrastructure , Cytoplasm/ultrastructure , Fibroblasts , Heat-Shock Proteins , Intracellular Signaling Peptides and Proteins/genetics , Kinesins , Mice , Mice, Knockout , Tumor Suppressor Proteins
4.
JCI Insight ; 9(17)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042459

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetic condition that results in dysmotile cilia. The repercussions of cilia dysmotility and gene variants on the multiciliated cell remain poorly understood. We used single-cell RNA-Seq, proteomics, and advanced microscopy to compare primary culture epithelial cells from patients with PCD, their heterozygous mothers, and healthy individuals, and we induced pluripotent stem cells (iPScs) generated from a patient with PCD. Transcriptomic analysis revealed unique signatures in PCD airway cells compared with their mothers' cells and the cells of healthy individuals. Gene expression in heterozygous mothers' cells diverged from both control and PCD cells, marked by increased inflammatory and cellular stress signatures. Primary and iPS-derived PCD multiciliated cells had increased expression of glutathione-S-transferases GSTA2 and GSTA1, as well as NRF2 target genes, accompanied by elevated levels of reactive oxygen species (ROS). Immunogold labeling in human cilia and proteomic analysis of the ciliated organism Chlamydomonas reinhardtii demonstrated that GSTA2 localizes to motile cilia. Loss of human GSTA2 and C. reinhardtii GSTA resulted in slowed cilia motility, pointing to local cilia regulatory roles. Our findings identify cellular responses unique to PCD variants and independent of environmental stress and uncover a dedicated ciliary GSTA2 pathway essential for normal motility that may be a therapeutic target.


Subject(s)
Cilia , Glutathione , Humans , Cilia/metabolism , Cilia/pathology , Cilia/genetics , Glutathione/metabolism , Female , Induced Pluripotent Stem Cells/metabolism , Epithelial Cells/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Proteomics , Kartagener Syndrome/genetics , Kartagener Syndrome/metabolism , Kartagener Syndrome/pathology , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/metabolism , Ciliary Motility Disorders/pathology , Male , Reactive Oxygen Species/metabolism , Cells, Cultured , Gene Expression Profiling
5.
Nat Commun ; 11(1): 5520, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139725

ABSTRACT

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.


Subject(s)
Adenine Nucleotides/metabolism , Asthenozoospermia/genetics , Cytoskeletal Proteins/deficiency , Situs Inversus/genetics , Adolescent , Adult , Animals , Asthenozoospermia/pathology , Axoneme/ultrastructure , CRISPR-Cas Systems/genetics , Cilia/metabolism , Cilia/ultrastructure , Cytoskeletal Proteins/genetics , DNA Mutational Analysis , Disease Models, Animal , Epididymis/pathology , Female , Flagella/metabolism , Flagella/ultrastructure , Humans , Loss of Function Mutation , Male , Mice , Mice, Knockout , Middle Aged , Planarians/cytology , Planarians/genetics , Planarians/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/pathology , Situs Inversus/diagnostic imaging , Situs Inversus/pathology , Sperm Motility/genetics , Tomography, X-Ray Computed , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL