Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Surg ; 275(2): e453-e462, 2022 02 01.
Article in English | MEDLINE | ID: mdl-32487804

ABSTRACT

OBJECTIVE: Acute Pancreatitis (AP) is sudden onset pancreas inflammation that causes systemic injury with a wide and markedly heterogeneous range of clinical consequences. Here, we hypothesized that this observed clinical diversity corresponds to diversity in molecular subtypes that can be identified in clinical and multiomics data. SUMMARY BACKGROUND DATA: Observational cohort study. n = 57 for the discovery cohort (clinical, transcriptomics, proteomics, and metabolomics data) and n = 312 for the validation cohort (clinical and metabolomics data). METHODS: We integrated coincident transcriptomics, proteomics, and metabolomics data at serial time points between admission to hospital and up to 48 hours after recruitment from a cohort of patients presenting with acute pancreatitis. We systematically evaluated 4 different metrics for patient similarity using unbiased mathematical, biological, and clinical measures of internal and external validity.We next compared the AP molecular endotypes with previous descriptions of endotypes in a critically ill population with acute respiratory distress syndrome (ARDS). RESULTS: Our results identify 4 distinct and stable AP molecular endotypes. We validated our findings in a second independent cohort of patients with AP.We observed that 2 endotypes in AP recapitulate disease endotypes previously reported in ARDS. CONCLUSIONS: Our results show that molecular endotypes exist in AP and reflect biological patterns that are also present in ARDS, suggesting that generalizable patterns exist in diverse presentations of critical illness.


Subject(s)
Pancreatitis/classification , Pancreatitis/diagnosis , Cohort Studies , Humans , Metabolomics , Proteomics
2.
Br J Clin Pharmacol ; 88(2): 865-870, 2022 02.
Article in English | MEDLINE | ID: mdl-34327739

ABSTRACT

GSK3335065 is an inhibitor of kynurenine monooxygenase (KMO) being developed for the treatment of acute pancreatitis. Healthy male volunteers were administered ascending doses of GSK3335065 or matched placebo as a single intravenous bolus injection to assess safety, tolerability, pharmacokinetics and pharmacodynamics. GSK3335065 displayed an apparent volume of distribution between 20.6 L and 44.6 L, a clearance between 0.462 L/h and 0.805 L/hr and a terminal half-life between 31.3 and 34.5 hr. In the single subject who received 1.3 mg GSK3335065, changes in tryptophan pathway metabolites were observed consistent with the changes seen in preclinical species suggesting that KMO enzyme activity was partially inhibited. However, a broad complex ventricular tachycardia was observed in this subject, which was judged to be a Serious Adverse Event (SAE) and resulted in early termination of the study. While development of GSK3335065 was subsequently discontinued, significant confounding factors hinder a clear interpretation that the tachycardia was directly related to administration of the compound.


Subject(s)
Kynurenine , Pancreatitis , Acute Disease , Double-Blind Method , Healthy Volunteers , Humans , Male , Mixed Function Oxygenases
3.
Bioorg Med Chem Lett ; 41: 127973, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33753261

ABSTRACT

α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α1-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.


Subject(s)
Drug Design , Protein Folding , alpha 1-Antitrypsin/metabolism , Crystallization , Drug Development/methods , Drug Evaluation, Preclinical , Endoplasmic Reticulum/metabolism , Gene Library , Hepatocytes/metabolism , Humans , Models, Molecular , Protein Conformation , alpha 1-Antitrypsin/genetics
5.
Cell Rep ; 42(8): 112763, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37478012

ABSTRACT

Kynurenine monooxygenase (KMO) blockade protects against multiple organ failure caused by acute pancreatitis (AP), but the link between KMO and systemic inflammation has eluded discovery until now. Here, we show that the KMO product 3-hydroxykynurenine primes innate immune signaling to exacerbate systemic inflammation during experimental AP. We find a tissue-specific role for KMO, where mice lacking Kmo solely in hepatocytes have elevated plasma 3-hydroxykynurenine levels that prime inflammatory gene transcription. 3-Hydroxykynurenine synergizes with interleukin-1ß to cause cellular apoptosis. Critically, mice with elevated 3-hydroxykynurenine succumb fatally earlier and more readily to experimental AP. Therapeutically, blockade with the highly selective KMO inhibitor GSK898 rescues the phenotype, reducing 3-hydroxykynurenine and protecting against critical illness and death. Together, our findings establish KMO and 3-hydroxykynurenine as regulators of inflammation and the innate immune response to sterile inflammation. During critical illness, excess morbidity and death from multiple organ failure can be rescued by systemic KMO blockade.


Subject(s)
Kynurenine , Pancreatitis , Mice , Animals , Critical Illness , Multiple Organ Failure , Acute Disease , Mice, Knockout , Inflammation , Kynurenine 3-Monooxygenase/genetics
6.
Proc Natl Acad Sci U S A ; 106(43): 18114-9, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19822747

ABSTRACT

Crystallography and computer modeling have been used to exploit a previously unexplored channel in the glucocorticoid receptor (GR). Highly potent, nonsteroidal indazole amides showing excellent complementarity to the channel were designed with the assistance of the computational technique AlleGrow. The accuracy of the design process was demonstrated through crystallographic structural determination of the GR ligand-binding domain-agonist complex of the D-prolinamide derivative 11. The utility of the channel was further exemplified through the design of a potent phenylindazole in which structural motifs, seen to interact with the traditional GR ligand pocket, were abandoned and replaced by interactions within the new channel. Occupation of the channel was confirmed with a second GR crystal structure of this truncated D-alaninamide derivative 13. Compound 11 displays properties compatible with development as an intranasal solution formulation, whereas oral bioavailability has been demonstrated with a related truncated exemplar 14. Data with the pyrrolidinone amide 12 demonstrate the potential for further elaboration within the "meta" channel to deliver compounds with selectivity for the desired transrepressive activity of glucocorticoids. The discovery of these interactions with this important receptor offers significant opportunities for the design of novel GR modulators.


Subject(s)
Amides/chemistry , Drug Design , Receptors, Glucocorticoid/chemistry , Amides/metabolism , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , NF-kappa B/metabolism , Protein Structure, Tertiary , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/metabolism
7.
Bioorg Med Chem Lett ; 21(4): 1126-33, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21257309

ABSTRACT

A novel series of indazole non-steroidal glucocorticoid receptor agonist has been discovered. This series features a sulfonamide central core and meta amides which interact with the extended ligand binding domain. This series has produced some of the most potent and least lipophilic agonists of which we are aware such as 20a (NFκB pIC(50) 8.3 (100%), clogP 1.9). Certain analogues in this series also display evidence for modulated pharmacology.


Subject(s)
Indazoles/chemistry , Receptors, Glucocorticoid/agonists , Sulfonamides/chemical synthesis , Binding Sites , Cell Line, Tumor , Computer Simulation , Drug Evaluation, Preclinical , Humans , Hydrophobic and Hydrophilic Interactions , Indazoles/chemical synthesis , Indazoles/pharmacology , Receptors, Glucocorticoid/metabolism , Structure-Activity Relationship , Sulfonamides/pharmacology
8.
EMBO Mol Med ; 13(3): e13167, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33512066

ABSTRACT

Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency.


Subject(s)
alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Animals , Endoplasmic Reticulum , Hepatocytes , Mice , alpha 1-Antitrypsin/genetics
10.
J Med Chem ; 63(6): 3348-3358, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32109056

ABSTRACT

ER aminopeptidase 1 (ERAP1) is an intracellular enzyme that generates antigenic peptides and is an emerging target for cancer immunotherapy and the control of autoimmunity. ERAP1 inhibitors described previously target the active site and are limited in selectivity, minimizing their clinical potential. To address this, we targeted the regulatory site of ERAP1 using a high-throughput screen and discovered a small molecule hit that is highly selective for ERAP1. (4aR,5S,6R,8S,8aR)-5-(2-(Furan-3-yl)ethyl)-8-hydroxy-5,6,8a-trimethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carboxylic acid is a natural product found in Dodonaea viscosa that constitutes a submicromolar, highly selective, and cell-active modulator of ERAP1. Although the compound activates hydrolysis of small model substrates, it is a competitive inhibitor for physiologically relevant longer peptides. Crystallographic analysis confirmed that the compound targets the regulatory site of the enzyme that normally binds the C-terminus of the peptide substrate. Our findings constitute a novel starting point for the development of selective ERAP1 modulators that have potential for further clinical development.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Antigen Presentation/drug effects , Diterpenes, Clerodane/pharmacology , Epitopes/metabolism , Peptides/metabolism , Protease Inhibitors/pharmacology , Allosteric Site , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , Diterpenes, Clerodane/chemistry , Diterpenes, Clerodane/metabolism , Enzyme Activators/chemistry , Enzyme Activators/metabolism , Enzyme Activators/pharmacology , Epitopes/chemistry , HeLa Cells , Humans , Mice , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Peptides/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protein Binding , Proteolysis/drug effects
11.
Sci Transl Med ; 12(541)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350131

ABSTRACT

Myotonic dystrophy type 1 (DM1) is an RNA-based disease with no current treatment. It is caused by a transcribed CTG repeat expansion within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. Mutant repeat expansion transcripts remain in the nuclei of patients' cells, forming distinct microscopically detectable foci that contribute substantially to the pathophysiology of the condition. Here, we report small-molecule inhibitors that remove nuclear foci and have beneficial effects in the HSALR mouse model, reducing transgene expression, leading to improvements in myotonia, splicing, and centralized nuclei. Using chemoproteomics in combination with cell-based assays, we identify cyclin-dependent kinase 12 (CDK12) as a druggable target for this condition. CDK12 is a protein elevated in DM1 cell lines and patient muscle biopsies, and our results showed that its inhibition led to reduced expression of repeat expansion RNA. Some of the inhibitors identified in this study are currently the subject of clinical trials for other indications and provide valuable starting points for a drug development program in DM1.


Subject(s)
Myotonic Dystrophy , Animals , Cyclin-Dependent Kinases , Disease Models, Animal , Humans , Mice , Myotonic Dystrophy/drug therapy , Myotonic Dystrophy/genetics , RNA , RNA Splicing/genetics , Trinucleotide Repeat Expansion/genetics
12.
Bioorg Med Chem Lett ; 19(16): 4846-50, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19592247

ABSTRACT

Starting from a non-steroidal glucocorticoid agonist aryl pyrazole derivative, the NFkappaB agonist activity was optimised in an iterative process from pIC(50) 7.5 (for 7), to pIC(50) 10.1 (for 38E1). An explanation for the SAR observed based is presented along with a proposed docking of 38E1 into the active site of the glucocorticoid receptor.


Subject(s)
Pyrazoles/chemistry , Receptors, Glucocorticoid/agonists , Catalytic Domain , Cell Line , Computer Simulation , Humans , Indazoles/chemistry , NF-kappa B/metabolism , Receptors, Glucocorticoid/metabolism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 19(1): 158-62, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19019676

ABSTRACT

Aryl aminopyrazole amides capped with N-alkylbenzamides 13-16 are selective glucocorticoid receptor agonists. 2,6-Disubstituted benzamides have prednisolone-like potency or better in vitro. Good oral exposure was demonstrated in the rat, with compounds with lower lipophilicity, for example N-hydroxyethyl benzamides (e.g., 16e).


Subject(s)
Benzamides/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Glucocorticoid/agonists , Administration, Oral , Animals , Benzamides/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Prednisolone , Pyrazoles/pharmacology , Rats , Structure-Activity Relationship
14.
J Med Chem ; 62(17): 8274-8283, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31393717

ABSTRACT

The wild type protein, transthyretin (TTR), and over 120 genetic TTR variants are amyloidogenic and cause, respectively, sporadic and hereditary systemic TTR amyloidosis. The homotetrameric TTR contains two identical thyroxine binding pockets, occupation of which by specific ligands can inhibit TTR amyloidogenesis in vitro. Ligand binding stabilizes the tetramer, inhibiting its proteolytic cleavage and its dissociation. Here, we show with solution-state NMR that ligand binding induces long-distance conformational changes in the TTR that have not previously been detected by X-ray crystallography, consistently with the inhibition of the cleavage of the DE loop. The NMR findings, coupled with surface plasmon resonance measurements, have identified dynamic exchange processes underlying the negative cooperativity of binding of "monovalent" ligand tafamidis. In contrast, mds84, our prototypic "bivalent" ligand, which is a more potent stabilizer of TTR in vitro that occupies both thyroxine pockets and the intramolecular channel between them, has greater structural effects.


Subject(s)
Fenamates/chemistry , Prealbumin/chemistry , Binding Sites , Fenamates/chemical synthesis , Humans , Ligands , Models, Molecular , Molecular Conformation , Molecular Structure , Prealbumin/chemical synthesis , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 18(23): 6097-9, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18952422

ABSTRACT

The amino-pyrazole 2,6-dichloro-N-ethyl benzamide 1 is a selective GR agonist with dexamethasone-like in vitro potency. Its X-ray crystal structure in the GR LBD (Glucocorticoid ligand-binding domain) is described and compared to other reported structures of steroidal GR agonists in the GR LBD (3E7C).


Subject(s)
Benzamides/chemical synthesis , Benzamides/pharmacology , Dexamethasone/pharmacology , Models, Molecular , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Receptors, Glucocorticoid/agonists , Benzamides/chemistry , Crystallography, X-Ray , Dexamethasone/chemistry , Molecular Conformation , Molecular Structure , Pyrazoles/chemistry , Structure-Activity Relationship
16.
Neurosci Lett ; 673: 44-50, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29499308

ABSTRACT

Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation and HTT expression in cultures of cerebellar granule neurones derived from HdhQ111/Q7 mice. This data serves to validate this pathway and paves the way for the discovery of small molecule inhibitors of this interaction as potential therapies for HD.


Subject(s)
Huntingtin Protein/metabolism , Neurons/metabolism , Proteins/metabolism , Animals , HEK293 Cells , Humans , Huntingtin Protein/genetics , Mice , Mutation , Primary Cell Culture , Protein Binding , Protein Phosphatase 2/metabolism , Ubiquitin-Protein Ligases
17.
J Med Chem ; 50(26): 6519-34, 2007 Dec 27.
Article in English | MEDLINE | ID: mdl-18038970

ABSTRACT

The synthesis and biological activity of tetrahydronaphthalene derivatives coupled to various heterocycles are described. These compounds are potent glucocorticoid receptor agonists with efficacy selectivity in an NFkappaB glucocorticoid receptor (GR) agonist assay (representing transrepression effects) over an MMTV GR agonist assay (representing transactivation effects). Quinolones, indoles, and C- and N-linked quinolines are some of the heterocycles that provide efficacy selectivity. For example, the isoquinoline 49D1E2 has NFkappaB agonism with pIC50 of 8.66 (89%) and reduced efficacy in MMTV agonism (6%), and the quinoline 55D1E1 has NFkappaB agonism with pIC50 of 9.30 (101%) and reduced efficacy in MMTV agonism with pEC50 of 8.02 (47%). A description of how a compound from each class is modeled in the active site of the receptor is given.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Receptors, Glucocorticoid/agonists , Tetrahydronaphthalenes/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Binding Sites , Cell Line , Drug Partial Agonism , Humans , Mammary Tumor Virus, Mouse/genetics , Models, Molecular , Molecular Mimicry , NF-kappa B/genetics , Receptors, Glucocorticoid/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects
18.
Nat Commun ; 8: 15827, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28604669

ABSTRACT

Kynurenine-3-monooxygenase (KMO) is a key FAD-dependent enzyme of tryptophan metabolism. In animal models, KMO inhibition has shown benefit in neurodegenerative diseases such as Huntington's and Alzheimer's. Most recently it has been identified as a target for acute pancreatitis multiple organ dysfunction syndrome (AP-MODS); a devastating inflammatory condition with a mortality rate in excess of 20%. Here we report and dissect the molecular mechanism of action of three classes of KMO inhibitors with differentiated binding modes and kinetics. Two novel inhibitor classes trap the catalytic flavin in a previously unobserved tilting conformation. This correlates with picomolar affinities, increased residence times and an absence of the peroxide production seen with previous substrate site inhibitors. These structural and mechanistic insights culminated in GSK065(C1) and GSK366(C2), molecules suitable for preclinical evaluation. Moreover, revising the repertoire of flavin dynamics in this enzyme class offers exciting new opportunities for inhibitor design.


Subject(s)
Enzyme Inhibitors/pharmacology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Multiple Organ Failure/metabolism , Pancreatitis/metabolism , Animals , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Humans , Hydrogen Peroxide/metabolism , Kynurenine 3-Monooxygenase/chemistry , Kynurenine 3-Monooxygenase/metabolism , Models, Molecular , Protein Domains , Sf9 Cells
19.
J Med Chem ; 60(8): 3383-3404, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28398044

ABSTRACT

Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP. We have identified and optimized a novel series of high affinity KMO inhibitors with favorable physicochemical properties. The leading example is exquisitely selective, has low clearance in two species, prevents lung and kidney damage in a rat model of acute pancreatitis, and is progressing into preclinical development.


Subject(s)
Enzyme Inhibitors/pharmacology , Kynurenine 3-Monooxygenase/antagonists & inhibitors , Pancreatitis/drug therapy , Acute Disease , Animals , Enzyme Inhibitors/therapeutic use , Humans , Rats
20.
J Med Chem ; 49(14): 4216-31, 2006 Jul 13.
Article in English | MEDLINE | ID: mdl-16821781

ABSTRACT

The tetrahydronaphthalene-benzoxazine glucocorticoid receptor (GR) partial agonist 4b was optimized to produce potent full agonists of GR. Aromatic ring substitution of the tetrahydronaphthalene leads to weak GR antagonists. Discovery of an "agonist trigger" substituent on the saturated ring of the tetrahydronaphthalene leads to increased potency and efficacious GR agonism. These compounds are efficacy selective in an NFkB GR agonist assay (representing transrepression effects) over an MMTV GR agonist assay (representing transactivation effects). 52 and 60 have NFkB pIC(50) = 8.92 (105%) and 8.69 (92%) and MMTV pEC(50) = 8.20 (47%) and 7.75 (39%), respectively. The impact of the trigger substituent on agonism is modeled within GR and discussed. 36, 52, and 60 have anti-inflammatory activity in a mouse model of inflammation after topical dosing with 52 and 60, having an effect similar to that of dexamethasone. The original lead was discovered by a manual agreement docking method, and automation of this method is also described.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Benzoxazines/chemical synthesis , Receptors, Glucocorticoid/agonists , Tetrahydronaphthalenes/chemical synthesis , Administration, Topical , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Benzoxazines/chemistry , Benzoxazines/pharmacology , Binding, Competitive , Cell Line , Dexamethasone/pharmacology , Humans , Hypersensitivity, Delayed/drug therapy , Mice , Models, Molecular , Radioligand Assay , Receptors, Glucocorticoid/antagonists & inhibitors , Receptors, Glucocorticoid/genetics , Stereoisomerism , Structure-Activity Relationship , Tetrahydronaphthalenes/chemistry , Tetrahydronaphthalenes/pharmacology , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL