Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Int J Mol Sci ; 22(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477687

ABSTRACT

Parasympathetic signalling via muscarinic acetylcholine receptors (mAChRs) regulates gastrointestinal smooth muscle function. In most instances, the mAChR population in smooth muscle consists mainly of M2 and M3 subtypes in a roughly 80% to 20% mixture. Stimulation of these mAChRs triggers a complex array of biochemical and electrical events in the cell via associated G proteins, leading to smooth muscle contraction and facilitating gastrointestinal motility. Major signalling events induced by mAChRs include adenylyl cyclase inhibition, phosphoinositide hydrolysis, intracellular Ca2+ mobilisation, myofilament Ca2+ sensitisation, generation of non-selective cationic and chloride currents, K+ current modulation, inhibition or potentiation of voltage-dependent Ca2+ currents and membrane depolarisation. A lack of ligands with a high degree of receptor subtype selectivity and the frequent contribution of multiple receptor subtypes to responses in the same cell type have hampered studies on the signal transduction mechanisms and functions of individual mAChR subtypes. Therefore, novel strategies such as genetic manipulation are required to elucidate both the contributions of specific AChR subtypes to smooth muscle function and the underlying molecular mechanisms. In this article, we review recent studies on muscarinic function in gastrointestinal smooth muscle using mAChR subtype-knockout mice.


Subject(s)
Gastrointestinal Tract/metabolism , Muscle, Smooth/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M3/genetics , Animals , GTP-Binding Proteins/genetics , Gastrointestinal Tract/growth & development , Gastrointestinal Tract/pathology , Mice, Knockout/genetics , Muscle Contraction/genetics , Muscle, Smooth/growth & development , Signal Transduction/genetics
2.
Am J Physiol Cell Physiol ; 318(3): C514-C523, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31875697

ABSTRACT

In mouse ileal myocytes, muscarinic receptor-mediated cationic current (mIcat) occurs mainly through synergism of M2 and M3 subtypes involving Gi/o-type GTP-binding proteins and phospholipase C (PLC). We have further studied the M2/M3 synergistic pathway. Carbachol-induced mIcat was markedly depressed by YM-254890, a Gq/11 protein inhibitor. However, the mIcat was unaffected by heparin, calphostin C, or chelerythrine, suggesting that mIcat activation does not involve signaling molecules downstream of phosphatidylinositol 4,5-bisphosphate (PIP2) breakdown. M2-knockout (KO) mice displayed a reduced mIcat (~10% of wild-type mIcat) because of the lack of M2-Gi/o signaling. The impaired mIcat was insensitive to neuropeptide Y possessing a Gi/o-stimulating activity. M3-KO mice also displayed a reduced mIcat (~6% of wild-type mIcat) because of the lack of M3-Gq/11 signaling, and the mIcat was insensitive to prostaglandin F2α possessing a Gq/11-stimulating activity. These results suggest the importance of Gq/11/PLC-hydrolyzed PIP2 breakdown itself in mIcat activation and also support the idea that the M2/M3 synergistic pathway represents a signaling complex consisting of M2-Gi/o and M3-Gq/11-PLC systems in which both G proteins are special for this pathway but not general in receptor coupling.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Intestinal Mucosa/metabolism , Myocytes, Smooth Muscle/metabolism , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/metabolism , Animals , Cholinergic Agonists/pharmacology , Dose-Response Relationship, Drug , Female , GTP-Binding Protein alpha Subunits, Gi-Go/agonists , Guinea Pigs , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Male , Mice , Mice, 129 Strain , Mice, Knockout , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Peptides, Cyclic/pharmacology , Receptor, Muscarinic M2/agonists , Receptor, Muscarinic M3/agonists
4.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G618-G630, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30001145

ABSTRACT

ATP-sensitive K+ (KATP) channels are expressed in gastrointestinal smooth muscles, and their activity is regulated by muscarinic receptor stimulation. However, the physiological significance and mechanisms of muscarinic regulation of KATP channels are not fully understood. We examined the effects of the KATP channel opener cromakalim and the KATP channel blocker glibenclamide on electrical activity of single mouse ileal myocytes and on mechanical activity in ileal segment preparations. To explore muscarinic regulation of KATP channel activity and its underlying mechanisms, the effect of carbachol (CCh) on cromakalim-induced KATP channel currents ( IKATP) was studied in myocytes of M2 or M3 muscarinic receptor-knockout (KO) and wild-type (WT) mice. Cromakalim (10 µM) induced membrane hyperpolarization in single myocytes and relaxation in segment preparations from WT mice, whereas glibenclamide (10 µM) caused membrane depolarization and contraction. CCh (100 µM) induced sustained suppression of IKATP in cells from both WT and M2KO mice. However, CCh had a minimal effect on IKATP in M3KO and M2/M3 double-KO cells. The Gq/11 inhibitor YM-254890 (10 µM) and PLC inhibitor U73122 (1 µM), but not the PKC inhibitor calphostin C (1 µM), markedly decreased CCh-induced suppression of IKATP in WT cells. These results indicated that KATP channels are constitutively active and contribute to the setting of resting membrane potential in mouse ileal smooth muscles. M3 receptors inhibit the activity of these channels via a Gq/11/PLC-dependent but PKC-independent pathways, thereby contributing to membrane depolarization and contraction of smooth muscles. NEW & NOTEWORTHY We systematically investigated the regulation of ATP-sensitive K+ channels by muscarinic receptors expressed on mouse ileal smooth muscles. We found that M3 receptors inhibit the activity of ATP-sensitive K+ channels via a Gq/11/PLC-dependent, but PKC-independent, pathway. This muscarinic suppression of ATP-sensitive K+ channels contributes to membrane depolarization and contraction of smooth muscles.


Subject(s)
Ileum/physiology , KATP Channels/metabolism , Muscle Contraction , Myocytes, Smooth Muscle/metabolism , Receptors, Muscarinic/metabolism , Signal Transduction , Action Potentials , Animals , Carbachol/pharmacology , Cromakalim/pharmacology , Estrenes/pharmacology , Female , GTP-Binding Protein alpha Subunits, Gq-G11/antagonists & inhibitors , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Ileum/metabolism , KATP Channels/genetics , Male , Mice , Muscarinic Agonists/pharmacology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/physiology , Peptides, Cyclic/pharmacology , Pyrrolidinones/pharmacology , Type C Phospholipases/antagonists & inhibitors , Type C Phospholipases/metabolism
5.
J Pharmacol Sci ; 134(1): 55-58, 2017 May.
Article in English | MEDLINE | ID: mdl-28456375

ABSTRACT

Cognitive impairment often occurs in Parkinson's disease (PD), but the mechanism of onset remains unknown. Recently, we reported that PD model mice produced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) show facilitation of hippocampal memory extinction, which may be the cause of cognitive impairment in PD. When we examined the cAMP/CREB signaling in the hippocampus, decreased levels of cAMP and phosphorylated CREB were observed in the dentate gyrus (DG) of MPTP-treated mice. Administration of rolipram improved the memory deficits with concomitant recovery of cAMP and phosphorylated CREB levels, suggesting that reduced cAMP/CREB signaling in the DG leads to cognitive impairment in MPTP-treated mice.


Subject(s)
Fear , Hippocampus/metabolism , MPTP Poisoning/drug therapy , Memory/drug effects , Parkinson Disease/drug therapy , Rolipram/pharmacology , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Behavior, Animal/drug effects , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Disease Models, Animal , Extinction, Psychological , Hippocampus/drug effects , MPTP Poisoning/metabolism , MPTP Poisoning/psychology , Male , Mice , Mice, Inbred C57BL , Parkinson Disease/metabolism , Parkinson Disease/psychology
6.
Biomed Res ; 45(3): 125-133, 2024.
Article in English | MEDLINE | ID: mdl-38839355

ABSTRACT

Clary sage essential oil (CSEO) is utilized in perfumery, aromatherapy, and skincare. Linalyl acetate (LA), a primary component of CSEO, possesses sedative, anxiolytic, and analgesic properties. However, the mechanism of its analgesic action is not clearly understood. Transient receptor potential ankyrin 1 (TRPA1) channel, a non-selective cation channel, is mainly expressed in sensory neurons and serves as a sensor of various irritants. In this study, we investigated the effects of LA on TRPA1 channel using heterologous expression system and isolated sensory neurons. To detect channel activity, we employed Ca2+ imaging and the whole-cell patch-clamp technique. The analgesic action of LA was measured in a pain-related behavioral mouse model. In cells that heterologously expressed TRPA1, LA diminished [Ca2+]i and current responses to allylisothiocyanate (AITC) and carvacrol: exogenous TRPA1 agonists, and the inhibitory effects were more pronounced for the former than for the latter. Moreover, LA suppressed [Ca2+] i and current responses to PGJ2: an endogenous TRPA1 agonist. Similar inhibitory actions were observed in native TRPA1 channels expressed in mouse sensory neurons. Furthermore, LA diminished PGJ2-induced nociceptive behaviors in mice. These findings suggest that analgesic effects of LA exert through inhibition of nociceptive TRPA1, making it a potential candidate for novel analgesic development.


Subject(s)
Analgesics , Monoterpenes , TRPA1 Cation Channel , Animals , TRPA1 Cation Channel/metabolism , TRPA1 Cation Channel/genetics , Mice , Analgesics/pharmacology , Monoterpenes/pharmacology , Humans , Male , Calcium/metabolism , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/drug effects , HEK293 Cells , Disease Models, Animal , Pain/drug therapy , Pain/metabolism
7.
J Pharmacol Sci ; 121(3): 227-36, 2013.
Article in English | MEDLINE | ID: mdl-23446189

ABSTRACT

Cholinergic nerve-mediated excitatory junction potentials (EJPs) in the longitudinal muscle of mouse ileum were characterized by using M2 or M3 muscarinic receptor-knockout (KO) mice and 1-[ß-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl]-1H-imidazole hydrochloride (SK&F 96365) and pertussis toxin (PTX). EJPs evoked by electrical field stimulation (EFS) in wild-type preparations, initially determined to be cholinergic in origin using tetrodotoxin, atropine, and eserine, were profoundly depressed after SK&F 96365 treatment known to block muscarinic receptor-operated cation channels. A similar depression of the EJPs was also observed by PTX treatment, which is predicted to disrupt M2-mediated pathways linked to cation channel activation. In M2-KO mouse preparations, cholinergic EJPs were evoked by EFS with their relative amplitude of 20%-30% to the wild-type EJP and strongly inhibited by SK&F 96365. No cholinergic EJP was seen in M3-KO as well as M2/M3 double-KO preparations. The results suggest that the wild-type cholinergic EJP is not a simple mixture of M2 and M3 responses, but due to synergistic activation of cation channels by both M2 and M3 receptors in the murine ileal longitudinal muscle.


Subject(s)
Action Potentials , Chloride Channels/metabolism , Cholinergic Neurons/physiology , Ileum/cytology , Muscle, Smooth/cytology , Myocytes, Smooth Muscle/metabolism , Neuromuscular Junction/physiology , Receptor, Muscarinic M2/physiology , Receptor, Muscarinic M3/physiology , Action Potentials/drug effects , Animals , Cells, Cultured , Chloride Channels/physiology , Electric Stimulation , Female , Male , Mice , Mice, Knockout , Pertussis Toxin/pharmacology
8.
J Vet Med Sci ; 85(7): 705-714, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37225446

ABSTRACT

Transient receptor potential melastatin 4 (TRPM4) cation channels are expressed in prostate glands. However, the precise role of these channels in prostate contractility remains unclear. In this study, we examined whether TRPM4 channels were involved in adrenergic contractions in the mouse prostate gland. Adrenergic contractile responses elicited by noradrenaline or electrical field stimulation of the sympathetic nerve were isometrically recorded, and the effects of 9-phenanthrol, a specific TRPM4 channel inhibitor, on those contractile responses were investigated in mouse ventral prostate preparations. 9-phenanthrol (10 or 30 µM) inhibited noradrenaline- and sympathetic nerve-evoked contractions in a concentration-dependent manner. A similar inhibitory effect was observed with another TRPM4 channel inhibitor, 4-chloro-2-(2-(naphthalene-1-yloxy) acetamido) benzoic acid (NBA; 10 µM). Inhibition by 9-phenanthrol and NBA were much greater at lower noradrenaline concentrations and lower stimulus frequencies than those of higher concentrations or frequencies. However, 9-phenanthrol did not inhibit the noradrenaline-induced contractile response when the membrane potential was decreased to approximately 0 mV in the 140 mM K+ medium. Moreover, 9-phenanthrol does not affect noradrenaline-induced increases in spontaneous contractions of cardiac atrial preparation. This agent inhibited noradrenaline-induced contractions in the posterior aorta preparation. However, the inhibitory effect was significantly weaker than that observed in the prostate gland. These results suggest that TRPM4 channels are involved in adrenergic contractions in the mouse prostate gland, possibly through membrane depolarization by their opening; therefore, they might be potential candidates for treating benign prostatic hyperplasia.


Subject(s)
TRPM Cation Channels , Transient Receptor Potential Channels , Male , Mice , Animals , Prostate , Muscle, Smooth , Transient Receptor Potential Channels/pharmacology , Adrenergic Agents/pharmacology , Muscle Contraction , Norepinephrine/pharmacology
9.
J Vet Med Sci ; 73(4): 453-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21139351

ABSTRACT

The present study was designed to explore the inhibitory mechanism by nitric oxide (NO) of the tachykininergic neuro-muscular transmissions in the hamster ileum. In the presence of guanethidine (1 µM), atropine (0.5 µM), nifedipine (0.1 µM) and apamin (100 nM), electrical field stimuli (EFS; 0.5 ms duration, 15 V) evoked non-adrenergic, non-cholinergic excitatory junction potentials (EJPs) in circular smooth muscle cells. The EJPs were markedly inhibited by the tachykinin NK1 receptor antagonists [D-Pro(4), D-Trp(7,9)]-SP(4-11) (3 µM). Both the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 200 µM) and the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 µM), did not affect on the resting membrane potentials, but enhanced the tachykininergic EJPs. In the presence of L-NAME (200 µM), exogenously applied NO (10 µM) and the membrane permeable analogue of guanosine 3',5'-cyclic monophosphate (cGMP), 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP, 3 mM), significantly inhibited the tachykininergic EJPs. Application of EFS (0.5 msec duration, 15 V) with trains of 20 pulses at 20 Hz increased amount of released substance P (SP). The release of SP was further increased by the treatment of L-NAME or ODQ, but markedly reduced by exogenously applied NO and 8-Br-cGMP. These results suggest that the endogenous NO may inhibit the tachykininergic neuro-muscular transmissions by the decrease of SP release from the tachykininergic neurons, possibly through a guanylate cyclase-cGMP-dependent mechanism in the hamster ileum.


Subject(s)
Cyclic GMP/metabolism , Ileum/metabolism , Neuromuscular Junction/physiology , Nitric Oxide/metabolism , Tachykinins/metabolism , Animals , Cricetinae , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Male , Membrane Potentials , Mesocricetus , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Oxadiazoles/pharmacology , Quinoxalines/pharmacology , Substance P/metabolism
10.
J Vet Med Sci ; 72(4): 443-51, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20009428

ABSTRACT

In the present study, we have characterized muscarinic receptor subtypes that mediate carbachol-induced Ca2+ sensitization of contraction in intestinal smooth muscle, using mutant mice lacking M(2) or M(3) muscarinic receptors or both receptor subtypes. In alpha-toxin-permeabilized muscle strips from wild-type (WT) mice, isometric tension responses to Ca2+ applied cumulatively (pCa 7.0-5.0) were increased when the muscarinic agonist carbachol (100 microM) was added to the medium, as judged from shifts of pCa-tension curves in both 50% effective concentration (EC(50)) and maximum response (E(max)) of pCa-tension curve. In preparations from M(2)-knockout (KO) mice, pCa-tension curves were also shifted by carbachol (100 microM), and the extents of the EC(50) and E(max) changes resembled those observed in preparations from WT mice. In preparations from M(3)-KO or M(2)/M(3)-double KO mice, however, no significant changes in pCa-tension curves were obtained after carbachol application. The G(q/11)-type G-protein inhibitor YM-254890 (1 microM) completely blocked the Ca2+ sensitization of contraction induced by carbachol in M(2)-KO or WT preparations. The results strongly support the idea that the muscarinic activation of Ca2+ sensitization in intestinal smooth muscles is mediated by the M(3) muscarinic receptor coupled to G(q/11)-type G-proteins, without any significant involvement of the other muscarinic receptor subtypes including M(2).


Subject(s)
Calcium/physiology , Ileum/physiology , Intestines/physiology , Mice, Knockout/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , Receptor, Muscarinic M2/deficiency , Receptor, Muscarinic M3/deficiency , Receptors, Muscarinic/physiology , Animals , Calcium/pharmacology , Carbachol/pharmacology , Female , Guanosine Triphosphate/pharmacology , Ileum/drug effects , Intestines/drug effects , Male , Mice , Mice, Knockout/genetics , Muscle Contraction/drug effects , Muscle Contraction/genetics , Muscle, Smooth/drug effects , Peptides, Cyclic/pharmacology , Receptor, Muscarinic M2/physiology , Receptor, Muscarinic M3/physiology
11.
J Pharmacol Exp Ther ; 330(2): 487-93, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19429792

ABSTRACT

The potential functional roles of M(3) muscarinic receptors in mouse atria were examined by pharmacological and molecular biological techniques, using wild-type mice, muscarinic M(2) or M(3) receptor single knockout (M(2)KO, M(3)KO), and M(2) and M(3) muscarinic receptor double knockout mice (M(2)/M(3)KO). Real-time quantitative reverse transcriptase-polymerase chain reaction analysis showed that the M(2) receptor mRNA was expressed predominantly in mouse atria but that the M(1), M(3), M(4), and M(5) receptor subtypes were also expressed at low levels. Carbachol (10 nM-30 microM) decreased the spontaneous beating frequency of right atria isolated from wild-type mice. Studies with subtype-preferring antagonists and atria from M(2)KO mice confirmed that this activity is mediated by the M(2) receptor subtype. In left atria from wild-type mice, carbachol decreased the amplitude of electrical field stimulation-evoked contractions (negative inotropic action), but this inhibition was transient and was followed by a gradual increase in contraction amplitude (positive inotropic response). In atria from M(3)KO mice, the transient negative inotropic action of carbachol changed to a sustained negative inotropic action. In contrast, in atria from M(2)KO mice, carbachol showed only positive inotropic activity. In atria from M(2)/M(3) double KO mice, carbachol was devoid of any inotropic activity. These observations, complemented by functional studies with subtype-preferring antagonists, convincingly demonstrate that atrial M(3) muscarinic receptors mediate positive inotropic effects in mouse atria. Physiologically, this activity may serve to dampen the inhibitory effects of M(2) receptor activation on atrial contractility.


Subject(s)
Heart/physiology , Myocardial Contraction/physiology , Receptor, Muscarinic M3/deficiency , Receptor, Muscarinic M3/physiology , Animals , Cholinergic Agonists/pharmacology , Dose-Response Relationship, Drug , Female , Heart/drug effects , Heart Atria/drug effects , Heart Atria/metabolism , Male , Mice , Mice, Knockout , Myocardial Contraction/drug effects , Myocardium/metabolism , Receptor, Muscarinic M3/agonists
12.
Environ Toxicol Pharmacol ; 28(1): 70-7, 2009 Jul.
Article in English | MEDLINE | ID: mdl-21783984

ABSTRACT

The effects of tributyltin (TBT) on cytosolic Ca(2+) concentration ([Ca(2+)](c)) and cell viability were investigated in nerve growth factor-differentiated PC12 cells. TBT concentration dependently increased [Ca(2+)](c) with an EC(50) value of 0.07µM. This effect was markedly reduced by removal of the extracellular Ca(2+) or membrane depolarization with a high K(+) medium, but unaffected by thapsigargin causing depletion of intracellular Ca(2+) stores. The L-type voltage-dependent Ca(2+) channel (VDCC) blocker nicardipine blocked the effect of TBT, but the N-type VDCC blocker ω-conotoxin did not. TBT decreased the number of viable cells with an EC(50) value of 0.09µM. The TBT-induced cell death was prevented by nicardipine or by chelating the cytosolic Ca(2+) with BAPTA-AM, but not by ω-conotoxin. The results show that TBT causes an increase in [Ca(2+)](c) via activating L-type VDCCs, and support the idea that the organotin-induced cell death arises through Ca(2+) mobilization via L-type VDCCs.

13.
J Vet Med Sci ; 81(2): 217-228, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30518701

ABSTRACT

Here, we investigated the effects of 9-hydroxyphenanthrene (9-phenanthrol), a potent and selective transient receptor potential melastatin 4 (TRPM4) channel blocker, on the resting membrane potential and cholinergic contractile responses to elucidate the functional role of TRPM4 channels in the contractile activities of mouse detrusor and ileal longitudinal smooth muscles. We observed that, 9-phenanthrol (3-30 µM) did not significantly inhibit high K+-induced contractions in both preparations; however, 9-phenanthrol (10 µM) strongly inhibited cholinergic contractions evoked by electrical field stimulation in detrusor preparations compared to inhibitions in ileal preparations. 9-Phenanthrol (10 µM) significantly inhibited the muscarinic agonist, carbachol-induced contractile responses and slowed the maximum upstroke velocities of the contraction in detrusor preparations. However, the agent (10 µM) did not inhibit the contractions due to intracellular Ca2+ release evoked by carbachol, suggesting that the inhibitory effect of 9-phenanthrol may primarily be due to the inhibition of the membrane depolarization process incurred by TRPM4 channels. On the other hand, 9-phenanthrol (10 µM) did not affect carbachol-induced contractile responses in ileal preparations. Further, 9-phenanthrol (10 µM) significantly hyperpolarized the resting membrane potential and decreased the basal tone in both detrusor and ileal muscle preparations. Taken together, our results suggest that TRPM4 channels are constitutively active and are involved in setting of the resting membrane potential, thereby regulating the basal tone in detrusor and ileal smooth muscles. Thus, TRPM4 channels play a significant role in cholinergic signaling in detrusor, but not ileal, smooth muscles.


Subject(s)
Membrane Potentials/physiology , Muscle Contraction/physiology , Muscle, Smooth/physiology , TRPM Cation Channels/physiology , Urinary Bladder/physiology , Animals , Carbachol/pharmacology , Cholinergic Agents/pharmacology , Dose-Response Relationship, Drug , Female , Ileum , Male , Membrane Potentials/drug effects , Mice , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Phenanthrenes/pharmacology , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/drug effects , Urinary Bladder/drug effects
14.
Sci Rep ; 9(1): 5887, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30971711

ABSTRACT

Gastrointestinal prokinetic agents function as serotonin-4 receptor (5-HT4R) agonists to activate myenteric plexus neurons to release acetylcholine (ACh), which then induce anti-inflammatory action. Details of this pathway, however, remain unknown. The aim of this study is to clarify the anti-inflammatory mechanism underlying the 5-HT4R agonist, mosapride citrate (MOS)-induced anti-inflammatory action on postoperative ileus (POI). POI models were generated from wild-type C57BL6/J (WT), 5-HT4R knock-out (S4R KO), α7 nicotinic AChR KO (α7 R KO), and M2 muscarinic ACh receptor KO (M2R KO) mice. MOS attenuated leukocyte infiltration in WT. MOS-induced anti-inflammatory action was completely abolished in both S4R KO and S4R KO mice upon wild-type bone marrow transplantation. MOS-induced anti-inflammatory action against macrophage infiltration, but not neutrophil infiltration, was attenuated in α7 R KO mice. Selective α7nAChR agonists (PNU-282987 and AR-R17779) also inhibited only macrophage infiltration in POI. MOS-mediated inhibition of neutrophil infiltration was diminished by atropine, M2AChR antagonist, methoctramine, and in M2R KO mice. Stimulation with 5-HT4R inhibits leukocyte infiltration in POI, possibly through myenteric plexus activation. Released ACh inhibited macrophage and neutrophil infiltration likely by activation of α7nAChR on macrophages and M2AChR. Thus, macrophage and neutrophil recruitment into inflamed sites is regulated by different types of AChR in the small intestine.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Intestine, Small/drug effects , Receptors, Cholinergic/metabolism , Acetylcholine/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use , Bridged Bicyclo Compounds/pharmacology , Bridged-Ring Compounds/pharmacology , Diamines/pharmacology , Ileus/drug therapy , Ileus/pathology , Intestine, Small/metabolism , Leukocytes/cytology , Leukocytes/immunology , Leukocytes/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Morpholines/pharmacology , Morpholines/therapeutic use , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/genetics , Receptors, Serotonin, 5-HT4/chemistry , Receptors, Serotonin, 5-HT4/genetics , Receptors, Serotonin, 5-HT4/metabolism , Spiro Compounds/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/agonists , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
15.
Eur J Pharmacol ; 599(1-3): 54-7, 2008 Dec 03.
Article in English | MEDLINE | ID: mdl-18845139

ABSTRACT

Application of 1-oleoyl-2-acetyl-sn-glycerol (OAG), an analogue of diacylglycerol (DAG) formed via M(3) muscarinic receptors, induced inward cationic currents via a protein kinase C-independent mechanism and produced membrane depolarization with increased action potential discharges in mouse intestinal myocytes. Outside-out patches from the myocytes responded to OAG with openings of 115-pS channels characterized by a mean open time (O(tau)) of 0.15 ms. M(3) receptor stimulation is reportedly capable of causing brief openings (O(tau)=0.23 ms) of 120-pS cationic channels in intestinal myocytes, thus the present results strongly support the idea that the M(3)-mediated 120-pS channel opening is brought about via DAG-dependent mechanisms.


Subject(s)
Diglycerides/pharmacology , Ion Channels/drug effects , Myocytes, Smooth Muscle/drug effects , Receptor, Muscarinic M3/metabolism , Action Potentials/drug effects , Animals , Cations/metabolism , Electrophysiology , Female , Intestine, Small/metabolism , Ion Channels/metabolism , Male , Mice , Myocytes, Smooth Muscle/metabolism , Patch-Clamp Techniques , Protein Kinase C/metabolism
16.
Naunyn Schmiedebergs Arch Pharmacol ; 377(4-6): 503-13, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18071676

ABSTRACT

Functional muscarinic acetylcholine receptors present in the mouse uterus were characterized by pharmacological and molecular biological studies using control (DDY and wild-type) mice, muscarinic M2 or M3 single receptor knockout (M2KO, M3KO), and M2 and M3 receptor double knockout mice (M2/M3KO). Carbachol (10 nM-100 microM) increased muscle tonus and phasic contractile activity of uterine strips of control mice in a concentration-dependent manner. The maximum carbachol-induced contractions (Emax) differed between cervical and ovarian regions of the uterus. The stage of the estrous cycle had no significant effect on carbachol concentration-response relationships. Tetrodotoxin did not decrease carbachol-induced contractions, but the muscarinic receptor antagonists (11-[[2-[(diethylaminomethyl)-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b[2,3-b][1,4]benzodiazepin6-one (AF-DX116), N-[2-[2-[(dipropylamino)methyl]-1-piperidinyl]ethyl]-5,6-dihydro-6-oxo-11H-pyrido[2,3-b][1,4] benzodiazepine-11-carboxamide (AF-DX384), 4-diphenylacetoxy-N-methyl-piperidine(4-DAMP), para-fluoro-hexa hydro-sila-diphenidol (p-F-HHSiD), himbacine, methoctramine, pirenzepine, and tropicamide) inhibited carbachol-induced contractions in a competitive fashion. The pKb values for these muscarinic receptor antagonists correlated well with the known pKi values of these antagonists for the M3 muscarinic receptor. In uterine strips isolated from mice treated with pertussis toxin (100 microg/kg, i.p. for 96 h), Emax values for carbachol were significantly decreased, but effective concentration that caused 50% of Emax values (EC50) remained unchanged. In uterine strips treated with 4-DAMP mustard (30 nM) and AF-DX116 (1 microM), followed by subsequent washout of AF-DX116, neither carbachol nor N,N,N,-trimethyl-4-(2-oxo-1-pyrolidinyl)-2-butyn-1-ammonium iodide (oxotremorine-M) caused any contractile responses. Both M2 and M3 muscarinic receptor messenger RNAs were detected in the mouse uterus via reverse transcription polymerase chain reaction. Carbachol also caused contraction of uterine strips isolated from M2KO mice, but the concentration-response curve was shifted to the right and downward compared with that for the corresponding wild-type mice. On the other hand, uterine strips isolated from M3KO and M2/M3 double KO mice were virtually insensitive to carbachol. In conclusion, although both M2 and M3 muscarinic receptors were expressed in the mouse uterus, carbachol-induced contractile responses were predominantly mediated by the M3 receptor. Activation of M2 receptors alone did not cause uterine contractions; however, M2 receptor activation enhanced M3 receptor-mediated contractions in the mouse uterus.


Subject(s)
Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Receptor, Muscarinic M2/drug effects , Receptor, Muscarinic M3/drug effects , Animals , Carbachol/administration & dosage , Cholinergic Agonists/administration & dosage , Dose-Response Relationship, Drug , Estrous Cycle , Female , Mice , Mice, Knockout , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Tetrodotoxin/pharmacology , Uterus/drug effects , Uterus/metabolism
17.
Toxicology ; 243(1-2): 155-63, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18023957

ABSTRACT

This study was designed to investigate the effects of several pyrethroids on the extracellular level of glutamate and gamma-aminobutyric acid (GABA) in the hippocampus of rats measured using microdialysis following systemic (i.p.) administration. Pyrethroids, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II), were found to have differential effects on glutamatergic and GABAergic neurons in the hippocampus. Allethrin had an interesting dual effect, increasing glutamate release with low doses (10 and 20mg/kg) to about 175-150% and decreasing glutamate release with high dose (60 mg/kg) to about 50% of baseline. Cyhalothrin (10, 20 and 60 mg/kg) inhibited the release of glutamate dose-dependently to about 60-30% of baseline. The extracellular level of GABA was decreased to about 50% of baseline by 10 and 20mg/kg allethrin. The high dose of allethrin (60 mg/kg) and all doses of cyhalothrin (10, 20 and 60 mg/kg) increased the extracellular level of GABA while decreasing the level of glutamate. Deltamethrin dose-dependently increased extracellular glutamate levels to about 190-275% of baseline while decreasing the level of GABA. Local infusion of TTX (1 microM), a Na(+) channel blocker, completely prevented the effect of allethrin (10, 20 and 60 mg/kg), cyhalothrin (20 and 60 mg/kg) and deltamethrin (20mg/kg) on glutamate and GABA release, but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on glutamate release was completely prevented by local infusion of nimodipine (10 microM), an L-type Ca(2+) channel blocker. Collectively, results from this study suggest that the excitatory glutamatergic neurons in the hippocampus are modulated by inhibitory GABA-releasing interneurons and that other mechanisms, beside sodium channels, may be involved with the neurotoxic action of pyrethroids.


Subject(s)
Glutamic Acid/metabolism , Hippocampus/drug effects , Insecticides/toxicity , Neurons/drug effects , Pyrethrins/toxicity , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism , Animals , Extracellular Fluid/metabolism , Hippocampus/metabolism , Male , Microdialysis , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Time Factors
18.
J Vet Med Sci ; 80(9): 1407-1415, 2018 Sep 13.
Article in English | MEDLINE | ID: mdl-29973432

ABSTRACT

ML204, a potent transient receptor potential canonical 4 (TRPC4) channel blocker, is often used to elucidate the involvement of TRPC4 channels in receptor-operated signaling processes in visceral smooth muscles. In the present study, we investigated the possible antagonistic actions of ML204 on M2 and M3 muscarinic receptors, which mediate contractions in mouse ileal and detrusor smooth muscles. In ileal and detrusor smooth muscle preparations, ML204 (3 or 10 µM) significantly inhibited electrical field stimulation (EFS)-evoked cholinergic contractions. However, it did not significantly inhibit high K+-induced and EFS-evoked non-cholinergic contractions in the ileal preparations. When the muscarinic agonist, carbachol was cumulatively applied, ML204 (1, 3 and 10 µM) caused a rightward parallel shift of the concentration-response curves of carbachol. Additionally, ML204 (1, 3 and 10 µM) inhibited carbachol-induced negative chronotropic response in atrial preparations, which is mediated by M2 muscarinic receptors. Furthermore, ML204 significantly inhibited the contractions evoked by carbachol-induced intracellular Ca2+ release, which is mediated by M3 muscarinic receptors. These results suggested that ML204 might exhibit antagonistic actions on M2 and M3 muscarinic receptors; in addition, the inhibitory effects of ML204 against EFS-induced cholinergic contractions might be attributed to this receptor antagonism rather than inhibition of TRPC4 channel activity. Therefore, these effects should be considered when ML204 is used as a TRPC4 channel blocker.


Subject(s)
Muscarinic Antagonists/pharmacology , Muscle Contraction/physiology , Receptors, Muscarinic/physiology , TRPC Cation Channels/physiology , Animals , Atrial Fibrillation , Carbachol , Japan , Male , Mice , Muscle, Smooth/physiology , Myocardium , TRPC Cation Channels/antagonists & inhibitors
19.
J Endocrinol ; 237(2): 207-216, 2018 05.
Article in English | MEDLINE | ID: mdl-29563233

ABSTRACT

Muscarinic acetylcholine receptors have been suggested to be implicated in arginine-vasopressin secretion because intracerebroventricular muscarinic agonist administration induces arginine-vasopressin release into the circulation. Although which subtype is involved in the regulation of arginine-vasopressin secretion is unclear, M2 receptors have been reported to be highly expressed in the hypothalamus. In the present study, M2 receptor-knockout mice were used to elucidate whether M2 receptor regulates arginine-vasopressin synthesis in the paraventricular nuclei and supraoptic nuclei of the hypothalamus. The number of arginine-vasopressin-immunoreactive neurons in M2 receptor-knockout mice was significantly decreased in the supraoptic nuclei, but not in the paraventricular nuclei compared with wild-type mice. Plasma arginine-vasopressin level in M2 receptor-knockout mice was also significantly lower than in the wild-type mice. Urinary volume and frequency as well as water intake in M2 receptor-knockout mice were significantly higher than those in wild-type mice. The V2 vasopressin receptor expression in kidneys of M2 receptor-knockout mice was comparable with that of wild-type mice, and increased urination in M2 receptor-knockout mice was significantly decreased by administration of desmopressin, a specific V2 receptor agonist, suggesting that V2 receptors in the kidneys of M2 receptor-knockout mice are intact. These results suggest that M2 receptors promote arginine-vasopressin synthesis in the supraoptic nuclei and play a role in the regulation and maintenance of body fluid.


Subject(s)
Arginine Vasopressin/biosynthesis , Receptor, Muscarinic M2/physiology , Supraoptic Nucleus/metabolism , Animals , Antidiuretic Agents/metabolism , Body Fluids/metabolism , Female , Mice , Mice, Knockout , Neurons/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Receptor, Muscarinic M2/genetics , Water-Electrolyte Balance/genetics
20.
Eur J Pharmacol ; 554(2-3): 212-22, 2007 Jan 12.
Article in English | MEDLINE | ID: mdl-17113073

ABSTRACT

Functional roles of muscarinic acetylcholine receptors in the regulation of mouse stomach motility were examined using mice genetically lacking muscarinic M(2) receptor and/or M(3) receptor and their corresponding wild-type (WT) mice. Single application of carbachol (1 nM-30 microM) produced concentration-dependent contraction in antral and fundus strips from muscarinic M(2) receptor knockout (M(2)R-KO) and M(3) receptor knockout (M(3)R-KO) mice but not in those from M(2) and M(3) receptors double knockout (M(2)/M(3)R-KO) mice. A comparison of the concentration-response curves with those for WT mice showed a significant decrease in the negative logarithm of EC(50) (pEC(50)) value (M(2)R-KO) or amplitude of maximum contraction (M(3)R-KO) in the muscarinic receptor-deficient mice. The tonic phase of carbachol-induced contraction was decreased in gastric strips from M(3)R-KO mice. Antagonistic affinity for 4-diphenylacetoxy-N-methyl-piperidine (4-DAMP) or 11-([2-[(diethylamino)methyl]-1-piperdinyl]acetyl)-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepine-6-one (AF-DX116) indicated that the contractile responses in M(2)R-KO and M(3)R-KO mice were mediated by muscarinic M(3) and M(2) receptors, respectively. Electrical field stimulation (EFS, 0.5-32 Hz) elicited frequency-dependent contraction in physostigmine- and N(omega)-nitro-L-arginine methylester (l-NAME)-treated fundic and antral strips from M(2)R-KO and M(3)R-KO mice, but the cholinergic contractile components decreased significantly compared with those in WT mice. In gastric strips from M(2)/M(3)R-KO mice, cholinergic contractions elicited by EFS were not observed but atropine-resistant contractions were more conspicuous than those in gastric strips from WT mice. Gastric emptying in WT mice and that in M(2)/M(3)R-KO mice were comparable, suggesting that motor function of the stomach in the KO mice did not differ from that in the WT mice. The results indicate that both muscarinic M(2) and M(3) receptors but not other subtypes mediate carbachol- or EFS-induced contraction in the mouse stomach but that the contribution of each receptor to concentration-response relationships is distinguishable. Although there was impairment of nerve-mediated cholinergic responses in the stomach of KO mice, gastric emptying in KO mice was the same as that in WT mice probably due to the compensatory enhancement of the non-cholinergic contraction pathway.


Subject(s)
Muscle Contraction/physiology , Muscle, Smooth/physiology , Receptor, Muscarinic M2/physiology , Receptor, Muscarinic M3/physiology , Stomach/physiology , Animals , Carbachol/pharmacology , Cholinergic Agonists/pharmacology , Dose-Response Relationship, Drug , Electric Stimulation , Enzyme Inhibitors/pharmacology , Female , Gastric Emptying/drug effects , Gastric Emptying/physiology , Gastric Fundus/drug effects , Gastric Fundus/physiology , Genotype , In Vitro Techniques , Male , Mice , Mice, Inbred Strains , Mice, Knockout , Muscarinic Antagonists/pharmacology , Muscle Contraction/drug effects , Muscle Relaxation/drug effects , Muscle Relaxation/physiology , Muscle, Smooth/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Physostigmine/pharmacology , Piperidines/pharmacology , Pirenzepine/analogs & derivatives , Pirenzepine/pharmacology , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M3/genetics , Stomach/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL