Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Nat Immunol ; 21(10): 1232-1243, 2020 10.
Article in English | MEDLINE | ID: mdl-32929275

ABSTRACT

The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.


Subject(s)
CD2 Antigens/metabolism , CD58 Antigens/metabolism , CD8-Positive T-Lymphocytes/metabolism , Immunological Synapses/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Cell Adhesion , Cells, Cultured , Humans , Immune Tolerance , Lymphocyte Activation , Protein Binding , Receptor Cross-Talk , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Single-Cell Analysis
3.
Proc Natl Acad Sci U S A ; 120(6): e2211368120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36730202

ABSTRACT

Ligation of T cell receptor (TCR) to peptide-MHC (pMHC) complexes initiates signaling leading to T cell activation and TCR ubiquitination. Ubiquitinated TCR is then either internalized by the T cell or released toward the antigen-presenting cell (APC) in extracellular vesicles. How these distinct fates are orchestrated is unknown. Here, we show that clathrin is first recruited to TCR microclusters by HRS and STAM2 to initiate release of TCR in extracellular vesicles through clathrin- and ESCRT-mediated ectocytosis directly from the plasma membrane. Subsequently, EPN1 recruits clathrin to remaining TCR microclusters to enable trans-endocytosis of pMHC-TCR conjugates from the APC. With these results, we demonstrate how clathrin governs bidirectional membrane exchange at the immunological synapse through two topologically opposite processes coordinated by the sequential recruitment of ecto- and endocytic adaptors. This provides a scaffold for direct two-way communication between T cells and APCs.


Subject(s)
Clathrin , Immunological Synapses , Clathrin/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes , Lymphocyte Activation
4.
Biophys J ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596785

ABSTRACT

Formation of the immunological synapse (IS) is a key event during initiation of an adaptive immune response to a specific antigen. During this process, a T cell and an antigen presenting cell form a stable contact that allows the T cell to integrate both internal and external stimuli in order to decide whether to activate. The threshold for T cell activation depends on the strength and frequency of the calcium (Ca2+) signaling induced by antigen recognition, and it must be tightly regulated to avoid undesired harm to healthy cells. Potassium (K+) channels are recruited to the IS to maintain the negative membrane potential required to sustain Ca2+ entry. However, the precise localization of K+ channels within the IS remains unknown. Here, we visualized the dynamic subsynaptic distribution of Kv1.3, the main voltage-gated potassium channel in human T cells. Upon T cell receptor engagement, Kv1.3 polarized toward the synaptic cleft and diffused throughout the F-actin rich distal compartment of the synaptic interface-an effect enhanced by CD2-CD58 corolla formation. As the synapse matured, Kv1.3 clusters were internalized at the center of the IS and released in extracellular vesicles. We propose a model in which specific distribution of Kv1.3 within the synapse indirectly regulates the channel function and that this process is limited through Kv1.3 internalization and release in extracellular vesicles.

5.
Nature ; 547(7663): 318-323, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28700579

ABSTRACT

Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (TFH) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human TFH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. TFH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human TFH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.


Subject(s)
B-Lymphocytes/immunology , Dopamine/metabolism , Germinal Center/immunology , Immunological Synapses/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CD40 Ligand/metabolism , Child , Chromogranin B/metabolism , Female , Germinal Center/cytology , Humans , Inducible T-Cell Co-Stimulator Ligand/metabolism , Mice , Models, Immunological , Neurotransmitter Agents/metabolism , Secretory Vesicles/metabolism , T-Lymphocytes, Helper-Inducer/cytology , Up-Regulation
6.
Proc Natl Acad Sci U S A ; 110(6): 2140-5, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23341604

ABSTRACT

YiiP is a dimeric Zn(2+)/H(+) antiporter from Escherichia coli belonging to the cation diffusion facilitator family. We used cryoelectron microscopy to determine a 13-Å resolution structure of a YiiP homolog from Shewanella oneidensis within a lipid bilayer in the absence of Zn(2+). Starting from the X-ray structure in the presence of Zn(2+), we used molecular dynamics flexible fitting to build a model consistent with our map. Comparison of the structures suggests a conformational change that involves pivoting of a transmembrane, four-helix bundle (M1, M2, M4, and M5) relative to the M3-M6 helix pair. Although accessibility of transport sites in the X-ray model indicates that it represents an outward-facing state, our model is consistent with an inward-facing state, suggesting that the conformational change is relevant to the alternating access mechanism for transport. Molecular dynamics simulation of YiiP in a lipid environment was used to address the feasibility of this conformational change. Association of the C-terminal domains is the same in both states, and we speculate that this association is responsible for stabilizing the dimer that, in turn, may coordinate the rearrangement of the transmembrane helices.


Subject(s)
Bacterial Proteins/chemistry , Cation Transport Proteins/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Cation Transport Proteins/ultrastructure , Cryoelectron Microscopy , Crystallography, X-Ray , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Sequence Homology, Amino Acid , Shewanella/genetics , Shewanella/metabolism , Zinc/metabolism
7.
Nat Chem Biol ; 8(10): 862-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22941046

ABSTRACT

Cardiolipin is a mitochondrial phospholipid with a characteristic acyl chain composition that depends on the function of tafazzin, a phospholipid-lysophospholipid transacylase, although the enzyme itself lacks acyl specificity. We incubated isolated tafazzin with various mixtures of phospholipids and lysophospholipids, characterized the lipid phase by (31)P-NMR and measured newly formed molecular species by MS. Substantial transacylation was observed only in nonbilayer lipid aggregates, and the substrate specificity was highly sensitive to the lipid phase. In particular, tetralinoleoyl-cardiolipin, a prototype molecular species, formed only under conditions that favor the inverted hexagonal phase. In isolated mitochondria, <1% of lipids participated in transacylations, suggesting that the action of tafazzin was limited to privileged lipid domains. We propose that tafazzin reacts with non-bilayer-type lipid domains that occur in curved or hemifused membrane zones and that acyl specificity is driven by the packing properties of these domains.


Subject(s)
1-Acylglycerophosphocholine O-Acyltransferase/metabolism , Drosophila Proteins/metabolism , Lipid Metabolism , Acylation , Animals , Drosophila , Lipid Bilayers , Micelles , Nuclear Magnetic Resonance, Biomolecular , Substrate Specificity
8.
Nat Commun ; 15(1): 3173, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609390

ABSTRACT

Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Animals , Humans , Actins , CD8-Positive T-Lymphocytes , Cytoskeleton , Semaphorin-3A/genetics
9.
J Extracell Biol ; 2(3): e74, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38938417

ABSTRACT

CD8+ T lymphocytes play vital roles in killing infected or deranged host cells, recruiting innate immune cells, and regulating other aspects of immune responses. Like any other cell, CD8+ T cells also produce extracellular particles. These include extracellular vesicles (EVs) and non-vesicular extracellular particles (NVEPs). T cell-derived EVs are proposed to mediate cell-to-cell signalling, especially in the context of inflammatory responses, autoimmunity, and infectious diseases. CD8+ T cells also produce supramolecular attack particles (SMAPs), which are in the same size range as EVs and mediate a component of T cell mediated killing. The isolation technique selected will have a profound effect on yield, purity, biochemical properties and function of T cell-derived particles; making it important to directly compare different approaches. In this study, we compared commonly used techniques (membrane spin filtration, ultracentrifugation, or size exclusion liquid chromatography) to isolate particles from activated human CD8+ T cells and validated our results by single-particle methods, including nanoparticle tracking analysis, flow cytometry, electron microscopy and super-resolution microscopy of the purified sample as well as bulk proteomics and lipidomics analyses to evaluate the quality and nature of enriched T cell-derived particles. Our results show that there is a trade-off between the yield and the quality of T cell-derived particles. Furthermore, the protein and lipid composition of the particles is dramatically impacted by the isolation technique applied. We conclude that from the techniques evaluated, size exclusion liquid chromatography offers the highest quality of T cell derived EVs and SMAPs with acceptable yields for compositional and functional studies.

10.
Nat Cell Biol ; 24(10): 1461-1474, 2022 10.
Article in English | MEDLINE | ID: mdl-36109671

ABSTRACT

The common view is that T lymphocytes activate telomerase to delay senescence. Here we show that some T cells (primarily naïve and central memory cells) elongated telomeres by acquiring telomere vesicles from antigen-presenting cells (APCs) independently of telomerase action. Upon contact with these T cells, APCs degraded shelterin to donate telomeres, which were cleaved by the telomere trimming factor TZAP, and then transferred in extracellular vesicles at the immunological synapse. Telomere vesicles retained the Rad51 recombination factor that enabled telomere fusion with T-cell chromosome ends lengthening them by an average of ~3,000 base pairs. Thus, there are antigen-specific populations of T cells whose ageing fate decisions are based on telomere vesicle transfer upon initial contact with APCs. These telomere-acquiring T cells are protected from senescence before clonal division begins, conferring long-lasting immune protection.


Subject(s)
Telomerase , Telomerase/genetics , Telomerase/metabolism , Immunologic Memory , T-Lymphocytes/metabolism , Telomere/genetics , Telomere/metabolism , Cellular Senescence/genetics
11.
Nat Commun ; 13(1): 3460, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710644

ABSTRACT

The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.


Subject(s)
CD40 Ligand , Extracellular Vesicles , CD40 Ligand/metabolism , Extracellular Vesicles/metabolism , Immunological Synapses , Synaptic Vesicles , T-Lymphocytes
12.
iScience ; 24(10): 103100, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34622155

ABSTRACT

Small immunoglobulin superfamily (sIGSF) adhesion complexes form a corolla of microdomains around an integrin ring and secretory core during immunological synapse (IS) formation. The corolla recruits and retains major costimulatory/checkpoint complexes, such as CD28, making forces that govern corolla formation of particular interest. Here, we investigated the mechanisms underlying molecular reorganization of CD2, an adhesion and costimulatory molecule of the sIGSF family during IS formation. Computer simulations showed passive distal exclusion of CD2 complexes under weak interactions with the ramified F-actin transport network. Attractive forces between CD2 and CD28 complexes relocate CD28 from the IS center to the corolla. Size-based sorting interactions with large glycocalyx components, such as CD45, or short-range CD2 self-attraction successfully explain the corolla 'petals.' This establishes a general simulation framework for complex pattern formation observed in cell-bilayer and cell-cell interfaces, and the suggestion of new therapeutic targets, where boosting or impairing characteristic pattern formation can be pivotal.

13.
Front Cell Dev Biol ; 9: 673446, 2021.
Article in English | MEDLINE | ID: mdl-34368126

ABSTRACT

The Jurkat E6.1 clone has been extensively used as a powerful tool for the genetic and biochemical dissection of the TCR signaling pathway. More recently, these cells have been exploited in imaging studies to identify key players in immunological synapse (IS) assembly in superantigen-specific conjugates and to track the dynamics of signaling molecules on glass surfaces coated with activating anti-CD3 antibodies. By comparison, Jurkat cells have been used only scantily for imaging on supported lipid bilayers (SLBs) incorporating laterally mobile TCR and integrin ligands, which allow to study synaptic rearrangements of surface molecules and the fine architecture of the mature IS, likely due to limitations in the assembly of immune synapses with well-defined architecture. Here we have explored whether upregulating the low levels of endogenous LFA-1 expression on Jurkat E6.1 cells through transduction with CD11a- and CD18-encoding lentiviruses can improve IS architecture. We show that, while forced LFA-1 expression did not affect TCR recruitment to the IS, E6.1 LFA-1 high cells assembled better structured synapses, with a tighter distribution of signaling-competent TCRs at the center of the IS. LFA-1 upregulation enhanced protein phosphotyrosine signaling on SLBs but not at the IS formed in conjugates with SEE-pulsed APCs, and led to the constitutive formation of an intracellular phosphotyrosine pool co-localizing with endosomal CD3ζ. This was paralleled by an increase in the levels of p-ZAP-70 and p-Erk both under basal conditions and following activation, and in enhanced Ca2+ mobilization from intracellular stores. The enhancement in early signaling E6.1 LFA-1 high cells did not affect expression of the early activation marker CD69 but led to an increase in IL-2 expression. Our results highlight a new role for LFA-1 in the core architecture of the IS that can be exploited to study the spatiotemporal redistribution of surface receptors on SLBs, thereby extending the potential of E6.1 cells and their derivatives for fine-scale imaging studies.

14.
Elife ; 82019 08 30.
Article in English | MEDLINE | ID: mdl-31469364

ABSTRACT

Planar supported lipid bilayers (PSLB) presenting T cell receptor (TCR) ligands and ICAM-1 induce budding of extracellular microvesicles enriched in functional TCR, defined here as synaptic ectosomes (SE), from helper T cells. SE bind peptide-MHC directly exporting TCR into the synaptic cleft, but incorporation of other effectors is unknown. Here, we utilized bead supported lipid bilayers (BSLB) to capture SE from single immunological synapses (IS), determined SE composition by immunofluorescence flow cytometry and enriched SE for proteomic analysis by particle sorting. We demonstrate selective enrichment of CD40L and ICOS in SE in response to addition of CD40 and ICOSL, respectively, to SLB presenting TCR ligands and ICAM-1. SE are enriched in tetraspanins, BST-2, TCR signaling and ESCRT proteins. Super-resolution microscopy demonstrated that CD40L is present in microclusters within CD81 defined SE that are spatially segregated from TCR/ICOS/BST-2. CD40L+ SE retain the capacity to induce dendritic cell maturation and cytokine production.


Subject(s)
CD40 Ligand/analysis , Cell-Derived Microparticles/chemistry , Cell-Derived Microparticles/metabolism , Receptors, Antigen/analysis , T-Lymphocytes, Helper-Inducer/metabolism , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Proteome/analysis
16.
Methods Mol Biol ; 1584: 423-441, 2017.
Article in English | MEDLINE | ID: mdl-28255717

ABSTRACT

Supported lipid bilayers (SLB) formed on glass substrates have been a useful tool for study of immune cell signaling since the early 1980s. The mobility of lipid-anchored proteins in the system, first described for antibodies binding to synthetic phospholipid head groups, allows for the measurement of two-dimensional binding reactions and signaling processes in a single imaging plane over time or for fixed samples. The fragility of SLB and the challenges of building and validating individual substrates limit most experimenters to ~10 samples per day, perhaps increasing this few-fold when examining fixed samples. Successful experiments might then require further days to fully analyze. We present methods for automation of many steps in SLB formation, imaging in 96-well glass bottom plates, and analysis that enables >100-fold increase in throughput for fixed samples and wide-field fluorescence. This increased throughput will allow better coverage of relevant parameters and more comprehensive analysis of aspects of the immunological synapse that are well reconstituted by SLB.


Subject(s)
CD4-Positive T-Lymphocytes/chemistry , Immunological Synapses/chemistry , Lipid Bilayers/chemistry , CD4-Positive T-Lymphocytes/immunology , Humans , Immunological Synapses/immunology , Lipid Bilayers/immunology
17.
J Cell Biol ; 216(4): 1123-1141, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28289091

ABSTRACT

Signal integration between activating Fc receptors and inhibitory signal regulatory protein α (SIRPα) controls macrophage phagocytosis. Here, using dual-color direct stochastic optical reconstruction microscopy, we report that Fcγ receptor I (FcγRI), FcγRII, and SIRPα are not homogeneously distributed at macrophage surfaces but are organized in discrete nanoclusters, with a mean radius of 71 ± 11 nm, 60 ± 6 nm, and 48 ± 3 nm, respectively. Nanoclusters of FcγRI, but not FcγRII, are constitutively associated with nanoclusters of SIRPα, within 62 ± 5 nm, mediated by the actin cytoskeleton. Upon Fc receptor activation, Src-family kinase signaling leads to segregation of FcγRI and SIRPα nanoclusters to be 197 ± 3 nm apart. Co-ligation of SIRPα with CD47 abrogates nanocluster segregation. If the balance of signals favors activation, FcγRI nanoclusters reorganize into periodically spaced concentric rings. Thus, a nanometer- and micron-scale reorganization of activating and inhibitory receptors occurs at the surface of human macrophages concurrent with signal integration.


Subject(s)
Macrophages/metabolism , Membranes/metabolism , Receptors, IgG/metabolism , Receptors, Immunologic/metabolism , Actin Cytoskeleton/metabolism , CD47 Antigen/metabolism , Carrier Proteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Phagocytosis/physiology , Protein Binding/physiology , Signal Transduction/physiology , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL