Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Neurochem Res ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283581

ABSTRACT

Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that may develop after experiencing traumatic events. Preclinical studies use various methods to induce PTSD-like models such as fear-conditioning, single-prolonged stress (SPS), restraint stress, and social defeat. Brain-derived neurotrophic factor (BDNF) is a crucial neurotrophin in mood regulation. Evidence shows BDNF changes in different neuropsychiatric disorders particularly PTSD. This review examined BDNF alterations in preclinical rodent models of PTSD where we demonstrated a wide range of paradoxical changes in BDNF. We found that the fear-conditioning model produced the most inconsistent alterations in BDNF, and suggest that conclusions drawn from these changes be approached with caution. We suggest that BDNF maladaptive changes in social defeat and restraint stress models may be related to the duration of stress, while the SPS model appears to have more consistent results. Ultimately, we propose that evaluating BDNF alterations in the process of treating PTSD symptoms may not be a reliable factor.

2.
Behav Pharmacol ; 35(4): 239-252, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38567447

ABSTRACT

Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors including hyperlocomotion. On the other hand, crocin (one of the main compounds of Crocus sativus L. or Saffron) may be beneficial in the improvement of mental and cognitive dysfunctions. Also, crocin can restore the deleterious effects of SD on mental and cognitive processes. In this study, we investigated the effect of REM SD on female rats' behaviors including depression- and anxiety-like behaviors, locomotion, pain perception, and obsessive-compulsive-like behavior, and also, the potential effect of crocin on REM SD effects. We used female rats because evidence on the role of REM SD in modulating psychological and behavioral functions of female (but not male) rats is limited. REM SD was induced for 14 days (6h/day), and crocin (25, 50, and 75 mg/kg) was injected intraperitoneally. Open field test, forced swim test, hot plate test, and marble burying test were used to assess rats' behaviors. The results showed REM SD-induced manic-like behavior (hyperlocomotion). Also, REM SD rats showed decreased anxiety- and depression-like behavior, pain subthreshold (the duration it takes for the rat to feel pain), and showed obsessive compulsive-like behavior. However, crocin at all doses partially or fully reversed REM SD-induced behavioral changes. In conclusion, our results suggested the possible comorbidity of OCD and REM SD-induced manic-like behavior in female rats or the potential role of REM SD in the etiology of OCD, although more studies are needed. In contrast, crocin can be a possible therapeutic choice for decreasing manic-like behaviors.


Subject(s)
Carotenoids , Crocus , Sleep Deprivation , Animals , Female , Rats , Sleep Deprivation/drug therapy , Sleep Deprivation/complications , Carotenoids/pharmacology , Obsessive-Compulsive Disorder/drug therapy , Anxiety/drug therapy , Behavior, Animal/drug effects , Mania/drug therapy , Depression/drug therapy , Rats, Wistar , Disease Models, Animal , Bipolar Disorder/drug therapy , Sleep, REM/drug effects , Dose-Response Relationship, Drug
3.
Eur J Clin Pharmacol ; 80(7): 983-1016, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38558317

ABSTRACT

Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Fluoxetine , Selective Serotonin Reuptake Inhibitors , Sertraline , Humans , Brain-Derived Neurotrophic Factor/blood , Brain-Derived Neurotrophic Factor/metabolism , Sertraline/pharmacology , Sertraline/therapeutic use , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use , Fluoxetine/pharmacology , Animals , Depression/drug therapy , Escitalopram/pharmacology , Escitalopram/therapeutic use , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use
4.
Neurol Sci ; 45(2): 417-430, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37843690

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia. The early diagnosis of AD is an important factor for the control of AD progression. Electroencephalography (EEG) can be used for early diagnosis of AD. Acetylcholinesterase inhibitors (AChEIs) are also used for the amelioration of AD symptoms. In this systematic review, we reviewed the effect of different AChEIs including donepezil, rivastigmine, tacrine, physostigmine, and galantamine on EEG patterns in patients with AD. METHODS: PubMed electronic database was searched and 122 articles were found. After removal of unrelated articles, 24 articles were selected for the present study. RESULTS: AChEIs can decrease beta, theta, and delta frequency bands in patients with AD. However, conflicting results were found for alpha band. Some studies have shown increased alpha frequency, while others have shown decreased alpha frequency following treatment with AChEIs. The only difference was the type of drug. CONCLUSIONS: We found that studies reporting the decreased alpha frequency used donepezil and galantamine, while studies reporting the increased alpha frequency used rivastigmine and tacrine. It was suggested that future studies should focus on the effect of different AChEIs on EEG bands, especially alpha frequency in patients with AD, to compare their effects and find the reason for their different influence on EEG patterns. Also, differences between the effects of AChEIs on oligodendrocyte differentiation and myelination may be another important factor. This is the first article investigating the effect of different AChEIs on EEG patterns in patients with AD.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Alzheimer Disease/drug therapy , Donepezil/therapeutic use , Rivastigmine/pharmacology , Rivastigmine/therapeutic use , Galantamine/pharmacology , Galantamine/therapeutic use , Acetylcholinesterase/therapeutic use , Tacrine/therapeutic use , Piperidines/therapeutic use , Indans/therapeutic use , Phenylcarbamates/therapeutic use
5.
Cell Mol Neurobiol ; 43(2): 711-727, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35568778

ABSTRACT

Sleep disturbances and Alzheimer's disease have deleterious effects on various physiological and cognitive functions including synaptic plasticity, oxidative stress, neuroinflammation, and memory. In addition, clock genes expression is significantly altered following sleep disturbances, which may be involved in the pathogenesis of Alzheimer's disease. In this review article, we aimed to discuss the role of sleep disturbances and Alzheimer's disease in the regulation of synaptic plasticity, oxidative stress, neuroinflammation, and clock genes expression. Also, we aimed to find significant relationships between sleep disturbances and Alzheimer's disease in the modulation of these mechanisms. We referred to the controversial effects of sleep disturbances (particularly those related to the duration of sleep deprivation) on the modulation of synaptic function and neuroinflammation. We aimed to know that, do sleep disturbances have a dual effect on the progression of Alzheimer's disease? Although numerous studies have discussed the association between sleep disturbances and Alzheimer's disease, the new point of this study was to focus on the controversial effects of sleep disturbances on different biological functions, and to evaluate the potential dualistic role of sleep disturbances in the pathogenesis of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Sleep Wake Disorders , Humans , Alzheimer Disease/metabolism , Neuroinflammatory Diseases , Sleep Wake Disorders/complications , Cognition , Sleep
6.
Neurochem Res ; 48(7): 2077-2092, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36786943

ABSTRACT

Sleep deprivation (SD) has deleterious effects on cognitive functions including learning and memory. However, some studies have shown that SD can improve cognitive functions. Interestingly, treadmill exercise has both impairment and improvement effects on memory function. In this study, we aimed to investigate the effect of SD for 4 (short-term) and 24 (long-term) hours, and two protocols of treadmill exercise (mild short-term and moderate long-term) on spatial memory performance, and oxidative and antioxidant markers in the serum of rats. Morris Water Maze apparatus was used to assess spatial memory performance. Also, SD was done using gentle handling method. In addition, the serum level of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) was measured. The results showed that 24 h SD (but not 4 h) had negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Long-term moderate (but not short-term mild) treadmill exercise had also negative effect on spatial memory performance, decreased SOD, CAT, and GSH-Px level, and increased MDA level. Interestingly, both protocols of treadmill exercise reversed spatial memory impairment and oxidative stress induced by 24 h SD. In conclusion, it seems that SD and treadmill exercise interact with each other, and moderate long-term exercise can reverse the negative effects of long-term SD on memory and oxidative status; although, it disrupted memory function and increased oxidative stress by itself.


Subject(s)
Sleep Deprivation , Spatial Memory , Rats , Animals , Rats, Wistar , Hippocampus/metabolism , Antioxidants/pharmacology , Oxidative Stress , Glutathione/metabolism , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism
7.
Metab Brain Dis ; 38(4): 1167-1176, 2023 04.
Article in English | MEDLINE | ID: mdl-36807082

ABSTRACT

Large evidence has shown that cholestasis has a wide-range of deleterious effects on brain function, and also, on neurocognitive functions including learning and memory. On the other hand, crocin (derived from Crocus sativus) is a medicinal natural compound that induces neuroprotective and precognitive effects. In this study, we aimed to evaluate the effect of crocin on spatial learning and memory in cholestatic rats with respect to the level of mitochondrial transcriptional factor A (TFAM), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), catalase (CAT), and superoxide dismutase (SOD) in the hippocampus of male Wistar rats. Bile duct ligation (BDL) was used to induce cholestasis. Y-maze apparatus was used to assess spatial memory performance and real-time PCR was used to assess TFAM and PGC-1α gene expression. Also, crocin was injected intraperitoneal at the doses of 15, 20, and 30 mg/kg for thirty days. The results showed that BDL impaired spatial memory in rats. BDL also decreased SOD, TFAM, and PGC-1α level. In addition, crocin partially reversed the impairment effect of BDL on spatial memory. Crocin (30 mg/kg) also reversed the effect of BDL on SOD, TFAM, and PGC-1α. Of note, the effect of BDL on CAT activity was controversial. It seems that BDL can increase CAT activity. In addition, crocin (30 mg/kg) reversed the enhancement of CAT following BDL to its control level. In conclusion, crocin may induce a significant neuroprotective effect on cholestasis-induced memory impairment.


Subject(s)
Cholestasis , Spatial Memory , Animals , Male , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Catalase/metabolism , Cholestasis/complications , Cholestasis/drug therapy , Hippocampus/metabolism , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Rats, Wistar , Superoxide Dismutase/metabolism , Transcription Factors/metabolism
8.
Metab Brain Dis ; 38(1): 195-219, 2023 01.
Article in English | MEDLINE | ID: mdl-36399239

ABSTRACT

In this review article, we aimed to discuss intricate roles of SD in modulating depression in preclinical and clinical studies. Decades of research have shown the inconsistent effects of SD on depression, focusing on SD duration. However, inconsistent role of SD seems to be more complicated, and SD duration cannot be the only one factor. Regarding this issue, we chose some important factors involved in the effects of SD on cognitive functions and mood including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), serotonin, cortisol, and tumor necrosis factor-alpha (TNF-α). It was concluded that SD has a wide-range of inconsistent effects on BDNF, VEGF, serotonin, and cortisol levels. It was noted that BDNF diurnal rhythm is significantly involved in the modulatory role of SD in depression. Furthermore, the important role of VEGF in blood-brain barrier permeability which is involved in modulating depression was discussed. It was also noted that there is a negative correlation between cortisol and BDNF that modulates depression. Eventually, it was concluded that TNF-α regulates sleep/wake cycle and is involved in the vulnerability to cognitive and behavioral impairments following SD. TNF-α also increases the permeability of the blood-brain barrier which is accompanied by depressive behavior. In sum, it was suggested that future studies should focus on these mechanisms/factors to better investigate the reasons behind intricate roles of SD in modulating depression.


Subject(s)
Sleep Deprivation , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A , Hydrocortisone , Depression/etiology , Brain-Derived Neurotrophic Factor/metabolism , Serotonin
9.
Neurochem Res ; 47(6): 1477-1490, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35195832

ABSTRACT

Evidence has shown the beneficial effects of exercise on learning and memory. However, many studies have reported controversial results, indicating that exercise can impair learning and memory. In this article, we aimed to review basic studies reporting inconsistent complicated effects of exercise on memory in rodents. Also, we discussed the mechanisms involved in the effects of exercise on memory processes. In addition, we tried to find scientific answers to justify the inconsistent results. In this article, the role of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (involved in synaptic plasticity and neurogenesis), and vascular endothelial growth factor, nerve growth factor, insulin-like growth factor 1, inflammatory markers, apoptotic factors, and antioxidant system was discussed in the modulation of exercise effects on memory. The role of intensity and duration of exercise, and type of memory task was also investigated. We also mentioned to the interaction of exercise with the function of neurotransmitter systems, which complicates the prediction of exercise effect via altering the level of BDNF. Eventually, we suggested that changes in the function of neurotransmitter systems following different types of exercise (depending on exercise intensity or age of onset) should be investigated in further studies. It seems that exercise-induced changes in the function of neurotransmitter systems may have a stronger role than age, type of memory task, or exercise intensity in modulating memory. Importantly, high levels of interactions between neurotransmitter systems and BDNF play a critical role in the modulation of exercise effects on memory performance.


Subject(s)
Brain-Derived Neurotrophic Factor , Vascular Endothelial Growth Factor A , Brain-Derived Neurotrophic Factor/metabolism , Exercise/physiology , Hippocampus/metabolism , Memory , Neuronal Plasticity/physiology , Vascular Endothelial Growth Factor A/metabolism
10.
Neurochem Res ; 46(8): 2154-2166, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34031842

ABSTRACT

Cholestasis is a bile flow reduction that is induced following Bile Duct Ligation (BDL). Cholestasis impairs memory and induces apoptosis. Apoptosis consists of two pathways: intrinsic and extrinsic. The intrinsic pathway is modulated by BCL-2 (B cell lymphoma-2) family proteins. BCL-2 (a pro-survival BCL-2 protein) has anti-apoptotic effect, while BAD (BCL-2-associated death) and BAX (BCL-2-associated X), the other members of BCL-2 family have pro-apoptotic effect. Furthermore, TFAM (mitochondrial transcriptional factor A) is involved in transcription and maintenance of mitochondrial DNA and PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) is a master regulator of mitochondrial biogenesis. On the other hand, NeuroAid is a Traditional Chinese Medicine with neuroprotective and anti-apoptosis effects. In this study, we evaluated the effect of cholestasis on spatial memory and expression of BCL-2, BAD, BAX, TFAM, and PGC-1α in the hippocampus of rats. Additionally, we assessed the effect of NeuroAid on cholestasis-induced cognitive and genetic alterations. Cholestasis was induced by BDL surgery and NeuroAid was injected intraperitoneal at the dose of 0.4 mg/kg. Furthermore, spatial memory was evaluated using Morris Water Maze (MWM) apparatus. The results showed cholestasis impaired spatial memory, increased the expression of BAD and BAX, decreased the expression of TFAM and PGC-1α, and did not alter the expression of BCL-2. Also, NeuroAid decreased the expression of BAD and BAX and increased the expression of TFAM, PGC-1α, and BCL-2. In conclusion, cholestasis impaired spatial memory and increased the expression of pro-apoptotic genes. Also, cholestasis decreased the expression of TFAM and PGC-1α. Interestingly, NeuroAid restored the effects of cholestasis.


Subject(s)
Cholestasis/metabolism , Drugs, Chinese Herbal/therapeutic use , Gene Expression/drug effects , Memory Disorders/drug therapy , Neuroprotective Agents/therapeutic use , Spatial Memory/drug effects , Animals , Apoptosis/drug effects , Bile Ducts/surgery , Cholestasis/complications , Hippocampus/drug effects , Hippocampus/metabolism , Ligation , Male , Memory Disorders/etiology , Morris Water Maze Test/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Rats, Wistar , Transcription Factors/genetics , bcl-2-Associated X Protein/genetics , bcl-Associated Death Protein/genetics
11.
Metab Brain Dis ; 36(7): 1791-1801, 2021 10.
Article in English | MEDLINE | ID: mdl-34019207

ABSTRACT

Bile secretion is a physiological function that is disrupted following Bile Duct Ligation (BDL) and induces cholestasis. Cholestasis is a bile flow reduction that induces apoptosis, oxidative stress, and inflammation, and alters the expression of genes. Evidence shows the relationship between cholestasis and neuroinflammation. Cholestasis via attenuating mitochondrial biogenesis and anti-oxidant activity can induce neuroinflammation and apoptosis. Mitochondrial transcriptional factor A (TFAM) and Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) are involved in mitochondrial biogenesis, and TFAM, PGC-1α, Catalase (CAT), and Superoxide dismutase (SOD) have a role in upregulating antioxidant pathways. On the other hand, many studies have shown the neuroprotective effects of Crocin, the water-soluble carotenoid of Saffron (Crocus sativus L.). In this study, we aimed to investigate the effect of Crocin on the level of TFAM, PGC-1α, CAT, and SOD following cholestasis-induced neuroinflammation in the rat's striatum. Cholestasis was induced by BDL surgery and administration of Crocin was intraperitoneal, at the dose of 30 mg/kg every day, 24 h after BDL surgery up to thirty days. The results showed that TFAM, PGC-1α, and SOD were decreased following cholestasis; while, CAT was increased. In addition, Crocin restored the effects of cholestasis on the level of TFAM, PGC-1α, and SOD. In conclusion, Crocin may have improvement effects on cholestasis-induced neuroinflammation in the rat's striatum.


Subject(s)
Cholestasis , Neuroinflammatory Diseases , Animals , Carotenoids/pharmacology , Carotenoids/therapeutic use , Catalase/metabolism , Cholestasis/complications , Cholestasis/drug therapy , Cholestasis/metabolism , Male , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Transcription Factors , Vitamin B 12/analogs & derivatives
12.
Neurochem Res ; 45(11): 2631-2640, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32797381

ABSTRACT

Tropisetron and Granisetorn are 5-HT3 antagonists with antiemetic effects. Tropisetron also has a partial agonistic effect on alpha-7 nicotinic acetylcholine receptors (α7 nAChRs). On the other hand, chronic cerebral hypoperfusion (CCH) attenuates cerebral blood flow and impairs cognitive functions. The goal of this study was to investigate the effect of Tropisetron and Granisetron on CCH-induced spatial memory impairment in rats. Forty-eight male Wistar rats were used in this study. 2-VO surgery was done to induce CCH and Radial Eight Arm Maz apparatus was used to evaluate spatial memory (working and reference memory). Tropisetron was injected intraperitoneally at the doses of 1 and 5 mg/kg, and Granisetron was injected intraperitoneally at the dose of 3 mg/kg. Dorsal hippocampal (CA1) neurons count, Interleukin 6 (IL-6) serum level, and serotonin-reuptake transporter (SERT) gene expression were also evaluated. The results showed, CCH impaired working and reference memory, increased IL-6 serum level, and decreased CA1 neurons and SERT expression. Tropisetron at the dose of 5 mg/kg restored all the effects of CCH. However, Granisetron did not restore CCH-induced memory impairment. Furthermore, Granisetron had no effect on IL-6. While, it increased SERT expression and CA1 neurons. In conclusion, Tropisetron but not Granisetron, ameliorated spatial memory impairment induced by CCH. We suggested conducting more detailed studies investigating the role of serotonergic system (5-HT3 receptors and serotonin transporters) and also α7 nAChRs in the effects of Tropisetron.


Subject(s)
Granisetron/therapeutic use , Memory Disorders/drug therapy , Serotonin 5-HT3 Receptor Antagonists/therapeutic use , Spatial Memory/drug effects , Tropisetron/therapeutic use , Animals , Arterial Occlusive Diseases/complications , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Carotid Artery, Common/surgery , Cerebrovascular Disorders/complications , Interleukin-6/metabolism , Male , Maze Learning/drug effects , Memory Disorders/etiology , Neurons/drug effects , RNA-Binding Proteins/metabolism , Rats, Wistar
13.
Metab Brain Dis ; 35(1): 183-192, 2020 01.
Article in English | MEDLINE | ID: mdl-31773435

ABSTRACT

Cholestasis means impaired bile synthesis or secretion. In fact, it is a bile flow reduction following Bile Duct Ligation (BDL). Cholestasis has a main role in necrosis and apoptosis. Apoptosis is a form of programmed cell death that has intrinsic and extrinsic pathways. The intrinsic pathway is mediated by Bcl-2 (B cell lymphoma-2) proteins which integrate death and survival signals. Bcl-2 has anti-apoptotic and Bax has pro-apoptotic effects. Also, striatum is one of the brain regions that has high expressions of Bcl-2 proteins. Moreover, Tfam and Pgc-1α are involved in mitochondrial biogenesis. On the other hand, NeuroAid, is a drug that has neuroprotective and anti-apoptosis effects. In this study, using quantitative PCR, we measured the expression of all these genes in the striatum of male rats following BDL and NeuroAid administration. Results showed, BDL increased the expression of Bax and Tfam and decreased the expression of Bcl-2. NeuroAid restored the effect of BDL on the expression of Bax, while did not alter the effect of BDL on Bcl-2. In addition, it increased the expression of Tfam that was previously elevated by BDL and raised the expression of Tfam in normal rats. Both BDL and NeuroAid, had no effect on Pgc-1α. In conclusion, cholestasis increased the expression of Bax and decreased the expression of Bcl-2, and this effect may have related to enhanced susceptibility of mitochondrial pathways following oxidative stress. Tfam expression was increased following cholestasis and this effect may have related to cellular compensatory mechanisms against high accumulation of free radicals or mitochondrial biogenesis failure. Furthermore, NeuroAid may play a role against apoptosis and can be used to increase mitochondrial biogenesis.


Subject(s)
Cholestasis/metabolism , Corpus Striatum/metabolism , Drugs, Chinese Herbal/therapeutic use , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/biosynthesis , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Transcription Factors/biosynthesis , bcl-2-Associated X Protein/biosynthesis , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cholestasis/drug therapy , Cholestasis/genetics , Corpus Striatum/drug effects , Drugs, Chinese Herbal/pharmacology , Gene Expression , Male , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Rats , Rats, Wistar , Transcription Factors/genetics , Treatment Outcome , bcl-2-Associated X Protein/genetics
14.
Eur Child Adolesc Psychiatry ; 28(12): 1619-1628, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30980177

ABSTRACT

Increasing evidence suggests that the function of the GABAergic system is abnormally low in autism spectrum disorder (ASD). Baclofen, which functions as a selective agonist for GABAB receptors, does appear promising for the treatment of ASD. We conducted a 10-week randomized-controlled study aimed at evaluating the potential of baclofen as an adjuvant therapy to enhance the effect of risperidone in children with ASD. Sixty-four children (3-12 years) with moderate-to-severe irritability symptoms of ASD were included. We used the Aberrant Behavior Checklist-Community Edition (ABC-C) for the outcome measures on each of the follow-up visits (weeks 0, 5, and 10). Analysis of the combined data revealed significant improvement for all the ABC subscales (irritability: F = 51.644, df = 1.66, p < 0.001, lethargy: F = 39.734, df = 1.38, p < 0.001, stereotypic behavior: F = 25.495, df = 1.56, p < 0.001, hyperactivity: F = 54.135, df = 1.35, p < 0.001, and inappropriate speech: F = 19.277, df = 1.47, p = 0.004). Combined treatment with baclofen and risperidone exerted a greater effect on improvement of hyperactivity symptoms at both midpoint [Cohen's d, 95% confidence interval (CI) = - 3.14, - 5.56 to - 0.72] and endpoint (d, 95% CI = - 4.45, - 8.74 to - 0.16) when compared with treatment with placebo plus risperidone. The two treatments achieved comparable results for other outcome measures. Our data support safety and efficacy of baclofen as an adjuvant to risperidone for improvement of hyperactivity symptoms in children with ASD.


Subject(s)
Antipsychotic Agents/therapeutic use , Autism Spectrum Disorder/drug therapy , Baclofen/therapeutic use , GABA-B Receptor Agonists/therapeutic use , Antipsychotic Agents/pharmacology , Baclofen/pharmacology , Child , Child, Preschool , Double-Blind Method , Female , GABA-B Receptor Agonists/pharmacology , Humans , Male , Treatment Outcome
15.
Naunyn Schmiedebergs Arch Pharmacol ; 397(9): 6879-6888, 2024 09.
Article in English | MEDLINE | ID: mdl-38568290

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are widely used drugs for the treatment of depression. Citalopram is one of the most prescribed SSRIs that is useful for the treatment of depression, obsessive-compulsive disorder, and anxiety disorders. On the other hand, crocin (active constitute of saffron) has pro-cognitive and mood enhancer effects. Also, both citalopram and crocin affect the function and expression of brain-derived neurotrophic factor (BDNF) and synaptophysin, two molecular factors that are involved in cognitive functions and mood. In the present study, we aim to investigate the interaction effect of citalopram and crocin on rats' performance in the open field test (locomotor activity and anxiety-like behavior) and the shuttle box (passive avoidance memory). Citalopram was injected at the doses of 10, 30, and 50 mg/kg, and crocin was injected at the dose of 50 mg/kg; all administrations were intraperitoneal. Real-time PCR was used to assess the expression level of BDNF and synaptophysin in the hippocampus. The results showed that citalopram (30 and 50 mg/kg) impaired passive avoidance memory and decreased BDNF and synaptophysin expression in the hippocampus, while crocin reversed memory impairment, and BDNF and synaptophysin expression in the hippocampus of rats received citalopram 30 mg/kg. Also, crocin partially showed these effects in rats that received citalopram 50 mg/kg. The results of the open field test were unchanged. In conclusion, we suggested that BDNF and synaptophysin may be involved in the effects of both citalopram and crocin.


Subject(s)
Brain-Derived Neurotrophic Factor , Carotenoids , Citalopram , Hippocampus , Memory , Rats, Wistar , Selective Serotonin Reuptake Inhibitors , Synaptophysin , Animals , Citalopram/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Carotenoids/pharmacology , Male , Synaptophysin/metabolism , Synaptophysin/genetics , Selective Serotonin Reuptake Inhibitors/pharmacology , Memory/drug effects , Rats , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Locomotion/drug effects , Drug Interactions , Dose-Response Relationship, Drug
16.
Behav Brain Res ; 468: 115039, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38718877

ABSTRACT

Chronic unpredictable mild stress (CUMS) method has been introduced as a rodent model of depression. On the other hand, olanzapine, as an antipsychotic, can induce antidepressant and antipsychotic effects. Also, olanzapine may improve cognitive functions. Both CUMS and olanzapine can also affect the expression level of brain-derived neurotrophic factor (BDNF) and synaptophysin, the molecular factors involved in synaptic function, and learning and memory. In this study, we investigated the effect of olanzapine on locomotor activity (using open field test), pain threshold (using hot plate), depressive-like behavior (using forced swim test), spatial learning and memory (using Morris water maze), and BDNF and synaptophysin hippocampal expression (using real-time PCR) in both male and female CUMS rats. CUMS was performed for three consecutive weeks. Olanzapine was also injected intraperitoneally at the dose of 5 mg/kg. Our data showed that olanzapine can reverse the effects of CUMS on behavioral functions and BDNF and synaptophysin expression levels in the hippocampus of both males and females. It was also shown that olanzapine effects on spatial memory, pain perception, and BDNF and synaptophysin level were stronger in females than males. In conclusion, we suggested that the therapeutic effects of olanzapine in CUMS rats may be closely related to the function of BDNF and synaptophysin. Also, the therapeutic effects of olanzapine may be stronger in females. Therefore, and for the first time, we showed that there may be a sex difference in the effects of olanzapine on behavioral and molecular changes following CUMS.


Subject(s)
Brain-Derived Neurotrophic Factor , Depression , Disease Models, Animal , Hippocampus , Olanzapine , Pain Perception , Spatial Memory , Stress, Psychological , Synaptophysin , Animals , Female , Male , Rats , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Depression/drug therapy , Depression/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Olanzapine/pharmacology , Pain Perception/drug effects , Pain Perception/physiology , Spatial Memory/drug effects , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Synaptophysin/metabolism , Rats, Wistar
17.
Psychopharmacology (Berl) ; 241(7): 1345-1363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38430395

ABSTRACT

BACKGROUND: Rapid-eye movement (REM) sleep deprivation (SD) can induce manic-like behaviors in rodents. On the other hand, lithium, as one of the oldest drugs used in neuropsychiatric disorders, is still one of the best drugs for the treatment and control of bipolar disorder. In this study, we aimed to investigate the role of chronic short-term REM SD in the induction of manic-like behaviors in female rats. METHODS: The rats were exposed to REM SD for 14 days (6 hours/day). Lithium was intraperitoneally injected at the doses of 10, 50, and 100 mg/kg. RESULTS: REM SD induced hyperactivity and OCD-like behavior, and decreased anxiety, depressive-like behavior, and pain subthreshold. REM SD also impaired passive avoidance memory and decreased hippocampal brain-derived neurotrophic factor (BDNF) expression level. Lithium at the doses of 50 and 100 mg/kg partly and completely abolished these effects, respectively. However, lithium (100 mg/kg) increased BDNF expression level in control and sham REM SD rats with no significant changes in behavior. CONCLUSIONS: Chronic short-term REM SD may induce a mania-like model and lead to OCD-like behavior and irritability. In the present study, we demonstrated a putative rodent model of mania induced by chronic REM SD in female rats. We suggest that future studies should examine behavioral and mood changes following chronic REM SD in both sexes. Furthermore, the relationship between manic-like behaviors and chronic REM SD should be investigated.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus , Mania , Sleep Deprivation , Animals , Female , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Sleep Deprivation/metabolism , Sleep Deprivation/complications , Rats , Mania/metabolism , Rats, Sprague-Dawley , Obsessive-Compulsive Disorder/metabolism , Disease Models, Animal , Behavior, Animal/drug effects , Dose-Response Relationship, Drug , Sleep, REM/drug effects
18.
Pharmacol Biochem Behav ; 234: 173675, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972713

ABSTRACT

In rodents, exposure to electrical shock and creating a strong fear memory using fear-conditioning model can induce PTSD-like behavior. In this study, we induced a fear-conditioning model in rats and investigated freezing (PTSD-like) behavior, 21 days after three shocks exposure (0.6 mA, 3 s, 30 seconds interval) in both male and female rats. Lithium was injected intraperitoneally (100 mg/kg) in three protocols: (1) 1 h after fear-conditioning (2) 1 h, 24 h, and 48 h after fear-conditioning (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning. Extinction training (20 sounds without shocks, 75 dB, 3 s, 30 seconds interval) was performed in three protocols: (1) 1 h after fear-conditioning (one session), (2) 1 h, 24 h, and 48 h after fear-conditioning (three sessions), (3), 1 h, 24 h, 48 h, 72 h, and 96 h after fear-conditioning (five sessions). Forced swim test (FST) and hot plate were used to assess behavior. Results showed that lithium in all protocols had no effect on freezing behavior, FST, and pain subthreshold in all rats. Extinction training decreased freezing behavior, with more efficacy in females. In males, only 5-session training was effective, while in females all protocols were effective. Extinction training also altered pain perception and the results of FST, depending on the sessions and was different in males and females. Brain-derived neurotrophic factor (BDNF) mRNA level was increased in females following 3 and 5 sessions, and in males following 5 sessions extinction training. In conclusion, we suggested that there is a sex difference for the effect of extinction training on freezing behavior and BDNF mRNA level in a rat model of fear-conditioning.


Subject(s)
Extinction, Psychological , Fear , Animals , Female , Male , Rats , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Extinction, Psychological/physiology , Fear/physiology , Hippocampus/metabolism , Lithium/pharmacology , Lithium/therapeutic use , RNA, Messenger , Sex Characteristics
19.
Behav Neurosci ; 138(2): 73-84, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38236234

ABSTRACT

Psilocybe cubensis is a species of psilocybin mushroom (magic mushroom) of moderate potency whose principal active compounds are psilocybin and psilocin. Recent studies have shown the significant procognitive and mood-enhancer effects of Psilocybe cubensis. However, evidence is so limited, especially in preclinical studies. We aimed to investigate the effect of Psilocybe cubensis extract on posttraumatic stress disorder (PTSD)-like behavior, pain perception, locomotor activity, and anxiety in a rat model of PTSD. Male rats were exposed to three consecutive shocks (0.8 mA, 3 s interval) paired with three sounds broadcasted 3 s before delivering shocks (75 dB, 3 s). After 1, 3, or 21 days, freezing rate was measured in the fear-conditioning apparatus. Open filed test and hot plate were used to assess locomotor activity and anxiety, and pain subthreshold, respectively. Psilocybe cubensis was injected intraperitoneal at the dose of 25 mg/kg (single administration) before (pretrain) or after (posttrain) shocks, or before the test (pretest). Results showed psilocybin potently alleviated PTSD symptom is short- but not long-term after the induction of PTSD. Psilocybe cubensis decreased locomotor activity only in a short period after administration. Psilocybe cubensis also increased pain subthreshold and decreased anxiety. In conclusion, Psilocybe cubensis effects on PTSD-like behavior and locomotor activity seem to be remained in short-term, while Psilocybe cubensis effects on pain subthreshold and anxiety remained long-term. This is the first study evaluating the effect of Psilocybe cubensis on PTSD-like behavior in rats in three different time protocols (1, 3, and 21 days after fear conditioning). (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Disease Models, Animal , Fear , Stress Disorders, Post-Traumatic , Animals , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/physiopathology , Male , Fear/drug effects , Rats , Psilocybin/pharmacology , Mental Recall/drug effects , Mental Recall/physiology , Anxiety/drug therapy , Rats, Wistar
20.
J Psychiatr Res ; 178: 180-187, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146821

ABSTRACT

Schizophrenia is a complex neuropsychiatric disorder with positive, negative, and cognitive symptoms. In rats, sub-chronic administration of ketamine is used for the induction of schizophrenia model. Increased locomotor activity is one of the most important features of psychotic-like symptoms in rodents. On the other hand, risperidone is a potent antipsychotic medication that is approved for the treatment of schizophrenia and bipolar disorder. In the present research, we aimed to investigate the effect of sub-chronic treatment of ketamine on cognitive and behavioral functions, and brain-derived neurotrophic factor (BDNF) expression level in the prefrontal cortex. Also, we assessed the efficacy of risperidone on cognitive and behavioral impairments induced by ketamine. Possible sex differences were also measured. Ketamine was intraperitoneally injected at the dose of 30 mg/kg for five consecutive days. Risperidone was also intraperitoneally injected at the dose of 2 mg/kg. Novel object recognition memory, pain threshold, locomotor activity, rearing behavior, and BDNF level were evaluated. The results showed that ketamine injection for five consecutive days impaired the acquisition of long-term recognition memory and decreased BDNF level in the prefrontal cortex in both sexes. Also, it decreased pain threshold in females, increased rearing behavior in males, and induced hyperlocomotion with greater effect in females. On the other hand, risperidone restored or attenuated the effect of ketamine on all the behavioral effects and BDNF level. In conclusion, we suggested that there were sex differences in the effects of ketamine on pain perception, locomotion, and rearing behavior in a rat model of schizophrenia.


Subject(s)
Brain-Derived Neurotrophic Factor , Disease Models, Animal , Ketamine , Prefrontal Cortex , Risperidone , Schizophrenia , Sex Characteristics , Animals , Ketamine/pharmacology , Ketamine/administration & dosage , Schizophrenia/drug therapy , Schizophrenia/chemically induced , Schizophrenia/physiopathology , Male , Female , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Risperidone/pharmacology , Risperidone/administration & dosage , Rats , Antipsychotic Agents/pharmacology , Antipsychotic Agents/administration & dosage , Recognition, Psychology/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/administration & dosage , Rats, Wistar , Behavior, Animal/drug effects , Pain Threshold/drug effects , Motor Activity/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL