Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Braz J Med Biol Res ; 57: e13190, 2024.
Article in English | MEDLINE | ID: mdl-38896642

ABSTRACT

The overexpression of the prostate cancer antigen 3 (PCA3) gene is well-defined as a marker for prostate cancer (PCa) diagnosis. Although widely used in clinical research, PCA3 molecular mechanisms remain unknown. Herein we used phage display technology to identify putative molecules that bind to the promoter region of PCA3 gene and regulate its expression. The most frequent peptide PCA3p1 (80%) was similar to the Rho GTPase activating protein 21 (ARHGAP21) and its binding affinity was confirmed using Phage Bead ELISA. We showed that ARHGAP21 silencing in LNCaP prostate cancer cells decreased PCA3 and androgen receptor (AR) transcriptional levels and increased prune homolog 2 (PRUNE2) coding gene expression, indicating effective involvement of ARHGAP21 in androgen-dependent tumor pathway. Chromatin immunoprecipitation assay confirmed the interaction between PCA3 promoter region and ARHGAP21. This is the first study that described the role of ARHGAP21 in regulating the PCA3 gene under the androgenic pathway, standing out as a new mechanism of gene regulatory control during prostatic oncogenesis.


Subject(s)
Antigens, Neoplasm , GTPase-Activating Proteins , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Neoplastic/genetics , Cell Line, Tumor , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Promoter Regions, Genetic/genetics , Chromatin Immunoprecipitation , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Enzyme-Linked Immunosorbent Assay
2.
Braz. j. med. biol. res ; 57: e13190, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1564168

ABSTRACT

The overexpression of the prostate cancer antigen 3 (PCA3) gene is well-defined as a marker for prostate cancer (PCa) diagnosis. Although widely used in clinical research, PCA3 molecular mechanisms remain unknown. Herein we used phage display technology to identify putative molecules that bind to the promoter region of PCA3 gene and regulate its expression. The most frequent peptide PCA3p1 (80%) was similar to the Rho GTPase activating protein 21 (ARHGAP21) and its binding affinity was confirmed using Phage Bead ELISA. We showed that ARHGAP21 silencing in LNCaP prostate cancer cells decreased PCA3 and androgen receptor (AR) transcriptional levels and increased prune homolog 2 (PRUNE2) coding gene expression, indicating effective involvement of ARHGAP21 in androgen-dependent tumor pathway. Chromatin immunoprecipitation assay confirmed the interaction between PCA3 promoter region and ARHGAP21. This is the first study that described the role of ARHGAP21 in regulating the PCA3 gene under the androgenic pathway, standing out as a new mechanism of gene regulatory control during prostatic oncogenesis.

3.
Biosens Bioelectron ; 100: 577-582, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29031228

ABSTRACT

Juvenile idiopathic arthritis (JIA) is a wide group of diseases, characterized by synovial inflammation and joint tissue damage. Due to the delay in the implementation of biomarkers into clinical practice and the association with severe sequels, there is an imperative need for new JIA diagnosis strategies. Electrochemical biosensors based on screen-printed electrodes and peptides are promising alternatives for molecular diagnosis. In this work, a novel biosensor for detecting juvenile idiopathic arthritis (JIA) was developed based on the immobilization of the PRF+1 mimetic peptide, as recognition biological element, on the surface of screen-printed carbon electrode. This biosensor was able to discriminate the JIA positive and negative serum samples from different individuals using differential pulse voltammetry, presenting limits of detection and quantification in diluted samples of 1:784 (v/v) and 1:235 (v/v), respectively. Evaluation by electrochemical impedance spectroscopy showed RCT 3 times higher for JIA positive sample than for a pool of human serum samples from healthy individuals. Surface analysis of the biosensor by atomic force microscopy, after contact with JIA positive serum, presented great globular clusters irregularly distributed. The long-term stability of the biosensor was evaluated, remaining functional for over 40 days of storage (after storage at 8°C). Therefore, a simple, miniaturized and selective biosensor was developed, being the first one based on mimetic peptide and screen-printed carbon electrode, aiming at the diagnosis of the juvenile idiopathic arthritis in real serum samples.


Subject(s)
Arthritis, Juvenile/diagnosis , Biosensing Techniques/methods , Peptides/chemistry , Arthritis, Juvenile/blood , Biosensing Techniques/instrumentation , Dielectric Spectroscopy , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Equipment Design , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL