Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
AAPS PharmSciTech ; 25(1): 14, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191830

ABSTRACT

Vemurafenib (VMF) is a practically insoluble (< 0.1 µg/mL) and least bioavailable (1%) drug. To enhance its oral bioavailability and solubility, we formulated a reliable self-nano emulsifying drug delivery system (SNEDDS). A Quality by Design (QbD) approach was used to optimize the ratio of Capryol 90, Tween 80, and Transcutol HP. VMF-loaded SNEDDS was characterized for its size, polydispersity index (PDI), zeta potential, drug content, and transmittance. The in vitro release profile of the drug loaded in SNEDDS was compared to the free drug in two media, pH 6.8 and 1.2, and the data obtained were analyzed with different mathematical models. A reverse-phase ultra-pressure liquid chromatography (UPLC) technique with high sensitivity and selectivity was developed and validated for the quantification of VMF in analytical and bioanalytical samples. Dissolution efficiency for SNEDDS was estimated using different models, which proved that the developed novel SNEDDS formulation had a better in vitro dissolution profile than the free drug. A 2.13-fold enhanced oral bioavailability of VMF-loaded SNEDDS compared to the free drug demonstrates the superiority of the developed formulation. This work thus presents an overview of VMF-loaded SNEDDS as a promising alternative to improve the oral bioavailability of the drug.


Subject(s)
Chromatography, Reverse-Phase , Polysorbates , Biological Availability , Vemurafenib , Solubility
2.
AAPS PharmSciTech ; 24(5): 130, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291443

ABSTRACT

Chemotherapy of multi-drug-resistant tuberculosis (TB) requires prolonged administration of multiple drugs. We investigated whether pulmonary delivery of minute doses of drugs, along with reduced oral doses of the same agents, would affect preclinical efficacy. We prepared dry powder inhalation (DPI) formulations comprising sutezolid (SUT), the second-generation pretomanid analog TBA-354 (TBA), or a fluorinated derivative of TBA-354 (32,625) in a matrix of the biodegradable polymer poly(L-lactide). We established formulation characteristics, doses inhaled by healthy mice, and preclinical efficacy in a mouse model of TB. Oral doses of 100 mg/kg/day or DPI doses of 0.25-0.5 mg/kg/day of drugs SUT, TBA-354, or 32,625 administered over 28 days were sub-optimally effective in reducing lung and spleen burden of Mycobacterium tuberculosis (Mtb) in infected mice. The addition of 0.25-0.5 mg/kg/day of SUT, TBA-354, or 32,625 as DPI to oral doses of 50 mg/kg/day was non-inferior in clearing Mtb from the lungs of infected mice. We concluded that adjunct therapy with inhaled second-line agents has the potential to reduce the efficacious oral dose.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Animals , Mice , Antitubercular Agents , Pharmaceutical Preparations , Drug Tapering , Tuberculosis, Multidrug-Resistant/drug therapy , Administration, Inhalation , Powders
3.
Pharm Res ; 39(10): 2621-2633, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962268

ABSTRACT

BACKGROUND: It is unclear whether Vitamin D is efficacious as a host-directed therapy (HDT) for patients of tuberculosis (TB). We investigated pulmonary delivery of the active metabolite of Vitamin D3, i.e., 1, 25-dihydroxy vitamin D3 (calcitriol) in a mouse model of infection with Mycobacterium tuberculosis (Mtb). METHODS: We optimized a spray drying process to prepare a dry powder inhalation (DPI) of calcitriol using a Quality by Design (QbD) approach. We then compared outcomes when Mtb-infected mice were treated with inhaled calcitriol at 5 ng/kg as a stand-alone intervention versus DPI as adjunct to standard oral anti-tuberculosis therapy (ATT). RESULTS: The DPI with or without concomitant ATT markedly improved the morphology of the lungs and mitigated histopathology in both the lungs and the spleens. The number of nodular lesions on the lung surface decreased from 43.7 ± 3.1 to 22.5 ± 3.9 with the DPI alone and to 9.8 ± 2.5 with DPI + ATT. However, no statistically significant induction of host antimicrobial peptide cathelicidin or reduction in bacterial burden was seen with the DPI alone. DPI + ATT did not significantly reduce the bacterial burden in the lungs compared to ATT alone. CONCLUSIONS: We concluded that HDT using the low dose calcitriol DPI contributed markedly to mitigation of pathology, but higher dose may be required to evoke significant induction of bactericidal host response and bactericidal activity in the lung.


Subject(s)
Calcitriol , Tuberculosis , Administration, Inhalation , Animals , Antitubercular Agents/pharmacology , Calcitriol/pharmacology , Dry Powder Inhalers , Mice , Powders , Tuberculosis/drug therapy
4.
PLoS Genet ; 14(8): e1007608, 2018 08.
Article in English | MEDLINE | ID: mdl-30125273

ABSTRACT

Diet profoundly affects metabolism and incidences of age-related diseases. Animals adapt their physiology to different food-types, modulating complex life-history traits like aging. The molecular mechanisms linking adaptive capacity to diet with aging are less known. We identify FLR-4 kinase as a novel modulator of aging in C. elegans, depending on bacterial diet. FLR-4 functions to prevent differential activation of the p38MAPK pathway in response to diverse food-types, thereby maintaining normal life span. In a kinase-dead flr-4 mutant, E. coli HT115 (K12 strain), but not the standard diet OP50 (B strain), is able to activate p38MAPK, elevate expression of cytoprotective genes through the nuclear hormone receptor NHR-8 and enhance life span. Interestingly, flr-4 and dietary restriction utilize similar pathways for longevity assurance, suggesting cross-talks between cellular modules that respond to diet quality and quantity. Together, our study discovers a new C. elegans gene-diet pair that controls the plasticity of aging.


Subject(s)
Aging/genetics , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Diet , Protein Serine-Threonine Kinases/physiology , Animals , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation , Longevity , Protein Serine-Threonine Kinases/genetics , RNA, Helminth/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/physiology , Signal Transduction , Transcriptome , p38 Mitogen-Activated Protein Kinases/physiology
5.
Int J Mol Sci ; 22(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34830338

ABSTRACT

Insulin/IGF-1-like signaling (IIS) plays a crucial, conserved role in development, growth, reproduction, stress tolerance, and longevity. In Caenorhabditis elegans, the enhanced longevity under reduced insulin signaling (rIIS) is primarily regulated by the transcription factors (TFs) DAF-16/FOXO, SKN-1/Nrf-1, and HSF1/HSF-1. The specific and coordinated regulation of gene expression by these TFs under rIIS has not been comprehensively elucidated. Here, using RNA-sequencing analysis, we report a systematic study of the complexity of TF-dependent target gene interactions during rIIS under analogous genetic and experimental conditions. We found that DAF-16 regulates only a fraction of the C. elegans transcriptome but controls a large set of genes under rIIS; SKN-1 and HSF-1 show the opposite trend. Both of the latter TFs function as activators and repressors to a similar extent, while DAF-16 is predominantly an activator. For expression of the genes commonly regulated by TFs under rIIS conditions, DAF-16 is the principal determining factor, dominating over the other two TFs, irrespective of whether they activate or repress these genes. The functional annotations and regulatory networks presented in this study provide novel insights into the complexity of the gene regulatory networks downstream of the IIS pathway that controls diverse phenotypes, including longevity.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , DNA-Binding Proteins/genetics , Forkhead Transcription Factors/genetics , Genome, Helminth , Insulin/metabolism , Transcription Factors/genetics , Transcriptome , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Ontology , Gene Regulatory Networks , Longevity/genetics , Molecular Sequence Annotation , Phenotype , Signal Transduction , Transcription Factors/metabolism
6.
Neurochem Res ; 45(9): 2143-2160, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32594293

ABSTRACT

Brain contains the highest lipid content involved in various structural and physiological activities such as structural development, neurogenesis, synaptogenesis, signal transduction and myelin sheath formation. Lipids bilayer is essential to maintain the structural integrity for the physiological functions of protein. Impairments in lipid metabolism and its composition can lead to the progression of various brain ailments such as neurodegenerative and neuropsychiatric disorders. Aluminium (Al), the potent neurotoxin has been linked to Alzheimer's disease (AD) like pathology. Al can bind to biomembrane and influence oligomerization and conformational changes of proteins by acting as cross-linkers. The present study evaluated the influence of Ginkgo biloba (GBE) on the lipid profile alterations induced by Al lactate in hippocampal and cortical regions using FTIR spectroscopy. Rats were exposed with 10 mg/kg b.w. (intraperitoneal) of Al lactate for 6 weeks. This was followed by a treatment protocol of GBE (100 mg/kg b.w.) both preexposure (2 weeks) and conjunctive (6 weeks) exposure. A self recovery group was also included, where Al withdrawal was done for 2 weeks post Al exposure. A significant decrease in peak areas of cholesterol, sphingolipids and phospholipids was observed in Al treated groups. Further, polyunsaturated fatty acids and membrane fluidity has also decreased, as revealed by olefinic and methyl asymmetric stretching bands. Al treatment significantly increased the fluorescence polarization, anisotropy and order parameter, which however were normalized following GBE supplementation. Results also showed that pretreatment with GBE provided more beneficial effects on the adverse changes following Al in membrane composition and behavioral outcome.


Subject(s)
Aluminum/toxicity , Brain/metabolism , Cell Membrane/metabolism , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Plant Extracts/therapeutic use , Animals , Brain/drug effects , Cell Membrane/chemistry , Cell Membrane/drug effects , Dopamine/metabolism , Elevated Plus Maze Test , Female , Ginkgo biloba/chemistry , Lipid Peroxidation/drug effects , Locomotion/drug effects , Rats, Sprague-Dawley
7.
Neurochem Res ; 45(2): 465-490, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31894463

ABSTRACT

Protein misfolding and aggregation of amyloid beta (Aß) peptide, as well as formation of neurofibrillary tangles (NFTs) are the signature hallmarks of Alzheimer's disease (AD) pathology. To prevent this, molecular chaperones come into play as they facilitate the refolding of the misfolded proteins and cell protection under stress. Here, we have evaluated the possible effects of Ginkgo biloba (GBE) against aggregation of the Aß through activation of heat shock proteins (HSPs) in the Aluminium (Al) induced AD based model. GBE (100 mg/kg body weight) was administered per oral to the female SD rats in conjunction with intraperitoneal (i.p.) injection of Al lactate (10 mg/kg body weight) for six weeks. Pretreated animals were administered GBE for additional two weeks prior to any exposure of Al. GBE administration resulted in decrease in Aß aggregation, ubiquitin deposition, accompanying a significant decline in APP & Tau protein hyperphosphorylation which can be attributed to activation of Heat shock factor (HSF-1) and upregulation in the protein expression of HSPs. Histopathological investigation studies have also shown the decrease in aggregation of Aß peptide by GBE administration. Additionally, the decrease in ROS levels and Aß aggregation by GBE administration prohibited the decline in the neurotransmitter levels and monoamine oxidase levels in hippocampus and cortex. This further caused improvement in learning and memory of the animals. In conclusion, our results indicate that GBE prevents the symptoms of Al induced AD like pathophysiology by upregulating the HSPs levels and decreasing the aggregation load.


Subject(s)
Amyloid beta-Peptides/metabolism , Heat-Shock Proteins/metabolism , Neuroprotective Agents/therapeutic use , Neurotoxicity Syndromes/drug therapy , Plant Extracts/therapeutic use , Protein Multimerization/drug effects , Acetylcholinesterase/metabolism , Aluminum/toxicity , Animals , Dentate Gyrus/pathology , Epinephrine/metabolism , Female , Ginkgo biloba/chemistry , Maze Learning/drug effects , Monoamine Oxidase/metabolism , Neurotoxicity Syndromes/pathology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Serotonin/metabolism , tau Proteins/metabolism
8.
Article in English | MEDLINE | ID: mdl-30962335

ABSTRACT

We compared the pharmacokinetics and efficacy of a combination of d-cycloserine (DCS) and ethionamide (ETO) via oral and inhalation routes in mice. The plasma half-life (t1/2) of oral ETO at a human-equivalent dose decreased from 4.63 ± 0.61 h to 1.64 ± 0.40 h when DCS was coadministered. The area under the concentration-time curve from 0 h to time t (AUC0-t ) was reduced to one-third. Inhalation overcame the interaction. Inhalation, but not oral doses, reduced the lung CFU/g of Mycobacterium tuberculosis H37Rv from 6 to 3 log10 in 4 weeks, indicating bactericidal activity.


Subject(s)
Antitubercular Agents/pharmacokinetics , Cycloserine/pharmacokinetics , Ethionamide/pharmacokinetics , Mycobacterium tuberculosis/drug effects , Tuberculosis, Pulmonary/drug therapy , Administration, Inhalation , Administration, Oral , Animals , Antitubercular Agents/administration & dosage , Cycloserine/administration & dosage , Drug Resistance, Bacterial , Ethionamide/administration & dosage , Lung/microbiology , Mice , Tuberculosis, Pulmonary/microbiology
9.
Exp Parasitol ; 197: 43-50, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30648557

ABSTRACT

Falcipain-2 (FP2) and falcipain-3 (FP3) constitute the major hemoglobinases of Plasmodium falciparum. Previous biochemical and structural studies have explained the mechanism of inhibition of these enzymes by small molecules. However, a residue-level protein-protein interaction (PPI) with its natural macromolecular substrate, hemoglobin is not fully characterized. Earlier studies have identified a short motif in the C-terminal of FP2, an exosite protruding away from the active site, essential for hemoglobin degradation. Our structural and mutagenesis studies suggest that hemoglobin interacts with FP2 via specific interactions mediated by Glu185 and Val187 within the C-terminal motif, which are essential for hemoglobin binding. Since FP3 is also a major hemoglobinase and essential for parasite survival, we further demonstrate its interactions with hemoglobin. Our results suggest that Asp194 of FP3 is required for hemoglobin hydrolysis and residue-swap experiments confirmed that this position is functionally conserved between the two hemoglobinases. Residues involved in protein-protein interactions constitute important targets for drug-mediated inhibition. Targeting protein-protein interactions at exosites may likely be less susceptible to emergence of drug resistance and thus is a new field to explore in malaria.


Subject(s)
Cysteine Endopeptidases/metabolism , Hemoglobins/metabolism , Plasmodium falciparum/enzymology , Aspartic Acid/chemistry , Cloning, Molecular , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/genetics , Glutamic Acid/chemistry , Hemoglobins/chemistry , Hydrolysis , Molecular Structure , Mutagenesis , Plasmodium falciparum/genetics
10.
Biochemistry ; 56(3): 534-542, 2017 01 24.
Article in English | MEDLINE | ID: mdl-27478903

ABSTRACT

Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.


Subject(s)
Adenosine Triphosphate/chemistry , Blastocystis/genetics , Guanosine Triphosphate/chemistry , Protein Engineering , Protozoan Proteins/chemistry , Succinate-CoA Ligases/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Binding Sites , Blastocystis/enzymology , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Guanosine Triphosphate/metabolism , Kinetics , Molecular Dynamics Simulation , Mutation , Protein Binding , Protein Structure, Secondary , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Static Electricity , Substrate Specificity , Succinate-CoA Ligases/genetics , Succinate-CoA Ligases/metabolism , Swine
12.
Int J Health Care Qual Assur ; 29(6): 703-15, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27298066

ABSTRACT

Purpose - The purpose of this paper is to provide systematic empirical evidence on the health planning through Village Health Sanitation and Nutrition Committees (VHSNCs) in India. Design/methodology/approach - A micro-level study was carried out using qualitative study design. Data were collected through in-depth interviews with 105 respondents selected from 42 VHSNC sites. A thematic analytical framework approach was used to analyse the data. Findings - The research results indicate that VHSNCs are playing a significant role in health planning. However, the committee meetings are not organised by the committee members on the regular basis. Most of the VHSNC members do not make village health plans. There are some challenges associated with the functioning of VHSNCs like insufficient resources, lack of people's interest, insignificant attention and the unfair behaviour of the Panchayati Raj leaders. Practical implications - The implications of the findings suggest that VHSNCs play a significant role in health planning. However, the leadership is ineffective due to their partial capabilities and approach that generate non-conducive environment. Studies of such nature will be helpful for policy makers in understanding the current situation and micro-level picture of VHSNC and also in analysing it in the existing health system. Originality/value - VHSNC functions with a broader concern and cover range of social determinants at the village level. This study provides empirical evidence on the VHSNCs as lowest part of the health system.


Subject(s)
Advisory Committees/organization & administration , Health Planning/organization & administration , Nutritional Status , Rural Health Services/organization & administration , Sanitation/methods , Adult , Developing Countries , Environment , Female , Health Education/organization & administration , Humans , India , Interviews as Topic , Male , Middle Aged , Public Health
13.
Neurochem Res ; 40(8): 1699-708, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26168778

ABSTRACT

Aluminium (Al) is neurotoxic primarily because of its interference with biological enzymes in key mechanisms of metabolic pathways. Mitochondria being a major site of reactive oxygen species (ROS) production, it seems that the oxidative damage to mitochondrial proteins may underlie the pathogenesis of Al induced neurodegeneration. The present study investigates the effectiveness of the anti-oxidant property of lazaroids (U-74500A), a known lipid peroxidation inhibitor as neuroprotective agent against Al induced neurotoxicity. Al chloride was administered orally at a dose level of 100 mg/kg body wt/day in water and U-74500A was administered at a dose of 0.25 mg/kg body wt i.p. in citrate buffer for a period of 8 weeks on alternate days. Following Al exposure there was a significant increase in lipid peroxidation (LPO), ROS levels and reduction in the activity of mitochondrial complexes in all the three regions of rat brain, i.e., cerebral cortex, mid brain, and cerebellum. This decrease in the activities of electron transport complexes in turn affected the ATP synthesis and ATP levels adversely in the mitochondria. These alterations were also depicted in the histology which shows signs of hypoxia, paucity of neurons in cortical region and loosening of fibers in the white matter. U-74500A co-administration was able to restore alterations in the LPO, ROS levels as well as all the three mitochondrial complexes and caspase expression. Therefore, it is suggested that 21-aminosteroids (lazaroids), by attenuating LPO and mitochondrial dysfunction, holds a promise as an agent that can potentially reduce Al-induced adverse effects in brain.


Subject(s)
Aluminum Compounds/poisoning , Antioxidants/pharmacology , Chlorides/poisoning , Neuroprotective Agents/pharmacology , Pregnatrienes/pharmacology , Aluminum Chloride , Animals , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Male , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
14.
Int J Biol Macromol ; 265(Pt 1): 130420, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460641

ABSTRACT

Proteolytic activity constitutes a fundamental process essential for the survival of the malaria parasite and is thus highly regulated. Falstatin, a protease inhibitor of Plasmodium falciparum, tightly regulates the activity of cysteine hemoglobinases, falcipain-2 and 3 (FP2, FP3), by inhibiting FP2 through a single surface exposed loop. However, the multimeric nature of falstatin and its interaction with FP2 remained unexplored. Here we report that the N-terminal falstatin region is highly disordered, and needs chaperone activity (heat-shock protein 70, HSP70) for its folding. Protein-protein interaction assays showed a significant interaction between falstatin and HSP70. Further, characterization of the falstatin multimer through a series of biophysical techniques identified the formation of a falstatin decamer, which was extremely thermostable. Computational analysis of the falstatin decamer showed the presence of five falstatin dimers, with each dimer aligned in a head-to-tail orientation. Further, the falstatin C-terminal region was revealed to be primarily involved in the oligomerization process. Stoichiometric analysis of the FP2-falstatin multimer showed the formation of a heterooligomeric complex in a 1:1 ratio, with the participation of ten subunits of each protein. Taken together, our results report a novel protease-inhibitor complex and strengthens our understanding of the regulatory mechanisms of major plasmodium hemoglobinases.


Subject(s)
Cysteine Endopeptidases , Plasmodium falciparum , Protein Folding
15.
Microbes Infect ; 26(3): 105282, 2024.
Article in English | MEDLINE | ID: mdl-38135025

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection leads to upregulation of Suppressors of Cytokine signaling (SOCS) expression in host macrophages (Mϕ). SOCS proteins inhibit cytokine signaling by negatively regulating JAK/STAT. We investigated this host-pathogen dialectic at the level of transcription. We used phorbol-differentiated THP-1 Mϕ infected with Mtb to investigate preferential upregulation of some SOCS isoforms that are known to inhibit signaling by IFN-γ, IL-12, and IL-6. We examined time kinetics of likely transcription factors and signaling molecules upstream of SOCS transcription, and survival of intracellular Mtb following SOCS upregulation. Our results suggest a plausible mechanism that involves PGE2 secretion during infection to induce the PKA/CREB axis, culminating in nuclear translocation of C/EBPß to induce expression of SOCS1. Mtb-infected Mϕ secreted IL-10, suggesting a mechanism of induction of STAT3, which may subsequently induce SOCS3. We provide evidence of temporal variation in SOCS isoform exspression and decay. Small-interfering RNA-mediated knockdown of SOCS1 and SOCS3 restored the pro-inflammatory milieu and reduced Mtb viability. In mice infected with Mtb, SOCS isoforms persisted across Days 28-85 post infection. Our results suggest that differential temporal regulation of SOCS isoforms by Mtb drives the host immune response towards a phenotype that facilitates the pathogen's survival.


Subject(s)
Mycobacterium tuberculosis , Humans , Animals , Mice , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Macrophages/microbiology , Interleukin-12 , Protein Isoforms/metabolism
16.
Bioanalysis ; 16(11): 557-567, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-39011589

ABSTRACT

Aim: A HPLC method was developed and validated for the novel combination of rutin (RN) and donepezil (DNP). Materials & methods: RN and DNP were simultaneously eluted through a C18 column (Ø 150 × 4.6 mm) with a 60:40 v/v ratio of 0.1% formic acid aqueous solution to methanol at 0.5 ml/min. Results: The purposed method was found linear, selective, reproducible, accurate and precise with percent RSD less than 2. The limit of quantification for RN and DNP was found 3.66 and 3.25 µg/ml, respectively. Conclusion: Validated as per the ICH guidelines, the developed method efficiently quantified RN and DNP co-loaded in DQAsomes (121 nm) estimating matrix effect, release profile, entrapment efficiency, loading efficiency and in vivo plasma kinetics.


[Box: see text].


Subject(s)
Donepezil , Rutin , Donepezil/blood , Donepezil/analysis , Chromatography, High Pressure Liquid/methods , Rutin/analysis , Rutin/blood , Humans , Chromatography, Reverse-Phase/methods , Reproducibility of Results
17.
Nanomedicine (Lond) ; : 1-13, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39225142

ABSTRACT

Aim & objective: Combinatorial delivery of Doxorubicin (DOX) and Baicalein (BAC) has a potential to improve breast cancer treatment by mitigating the cardiotoxicity induced by DOX. The nanoformulation has been optimized and subjected to pharmacokinetic studies using LC-MS/MS.Materials & methods: Nanoformulation bearing DOX and BAC was optimized using quality by design approach and method validation was done following USFDA guidelines.Results: The particle size, PDI and zeta potential of developed nanoformulation were 162.56 ± 2.21 nm, 0.102 ± 0.03 and -16.5 ± 1.21 mV, respectively. DOX-BAC-SNEDDs had a higher AUC0-t values of 6128.84 ± 68.71 and 5896.62 ± 99.31 ng/mL/h as compared with DOX-BAC suspension.Conclusion: These findings hold promise for advancing breast cancer treatment and facilitating therapeutic drug monitoring.


[Box: see text].

18.
Tuberculosis (Edinb) ; 148: 102536, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38976934

ABSTRACT

Host-directed therapy (HDT) with vitamin D in tuberculosis (TB) is beneficial only if the subject is deficient in vitamin D. We investigated pulmonary delivery of 1,25-dihydroxy vitamin D3 (calcitriol) in mice infected with Mycobacterium tuberculosis (Mtb). We made two kinds of dry powder inhalations (DPI)- soluble particles or poly(lactide) (PLA) particles. We compared treatment outcomes when infected mice were dosed with a DPI alone or as an adjunct to standard oral anti-TB therapy (ATT). Mice infected on Day 0 were treated between Days 28-56 and followed up on Days 57, 71, and 85. Neither DPI significantly reduced Mtb colony forming units (CFU) in the lungs. Combining DPI with ATT did not significantly augment bactericidal activity in the lungs, but CFU were 2-log lower in the spleen. CFU showed a rising trend on stopping treatment, sharper in groups that did not receive calcitriol. Lung morphology and histology improved markedly in animals that received PLA DPI; with or without concomitant ATT. Groups receiving soluble DPI had high mortality. DPI elicited cathelicidin, interleukin (IL)-1 and induced autophagy on days 57, 71, and 85. Macrophage-targeted calcitriol is therefore bacteriostatic, evokes innate microbicidal mechanisms, and mitigates pathology arising from the host response to Mtb.


Subject(s)
Antitubercular Agents , Calcitriol , Disease Models, Animal , Lung , Macrophages , Mycobacterium tuberculosis , Animals , Calcitriol/pharmacology , Mycobacterium tuberculosis/drug effects , Lung/microbiology , Lung/drug effects , Lung/pathology , Lung/immunology , Lung/metabolism , Macrophages/drug effects , Macrophages/microbiology , Macrophages/immunology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Female , Administration, Inhalation , Cathelicidins , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Tuberculosis, Pulmonary/immunology , Polyesters , Host-Pathogen Interactions , Time Factors , Mice, Inbred C57BL , Spleen/drug effects , Spleen/microbiology , Spleen/pathology , Spleen/immunology , Drug Therapy, Combination , Antimicrobial Cationic Peptides/pharmacology , Mice
19.
Nanomedicine (Lond) ; 19(24): 1995-2010, 2024.
Article in English | MEDLINE | ID: mdl-39115873

ABSTRACT

Aim & Objective: This study evaluates the potential of combining paclitaxel (PTX) and bortezomib (BTZ) for breast cancer therapy.Materials & Methods: The nanoformulation was optimized via Box-Behnken Design (BBD), with method validation adhering to US-FDA guidelines.Results: Multiple reaction monitoring transitions for PTX, BTZ and internal standard were m/z 855.80→286.60, 366.80→226.00 and 179.80→110.00, respectively. Elution done on C18 Luna column with 0.1% FA in MeOH:10 mM ammonium acetate. The size of nanoformulation was 133.9 ± 1.97 nm, PDI 0.19 ± 0.01 and zeta potential -19.20 ± 1.36 mV. Pharmacokinetics showed higher Cmax for PTX-BTZ-NE (313.75 ± 10.71 ng/ml PTX, 11.92 ± 0.53 ng/ml BTZ) versus free PTX-BTZ (104 ± 13.06 ng/ml PTX, 1.9 ± 0.08 ng/ml BTZ).Conclusion: Future findings will contribute to the treatment of breast cancer using PTX and BTZ.


[Box: see text].


Subject(s)
Bortezomib , Paclitaxel , Tandem Mass Spectrometry , Paclitaxel/pharmacokinetics , Paclitaxel/administration & dosage , Bortezomib/pharmacokinetics , Bortezomib/administration & dosage , Bortezomib/chemistry , Tandem Mass Spectrometry/methods , Humans , Female , Chromatography, Liquid/methods , Breast Neoplasms/drug therapy , Animals , Nanoparticles/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Liquid Chromatography-Mass Spectrometry
20.
PLoS One ; 18(3): e0282580, 2023.
Article in English | MEDLINE | ID: mdl-36920996

ABSTRACT

Nipah virus (NiV) is an emerging zoonotic virus that caused several serious outbreaks in the south asian region with high mortality rates ranging from 40 to 90% since 2001. NiV infection causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. No specific and effective vaccine has yet been reported against NiV. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have designed two Multi-Epitope Vaccines (MEVs) composed of 33 Cytotoxic T lymphocyte (CTL) epitopes and 38 Helper T lymphocyte (HTL) epitopes. Out of those CTL and HTL combined 71 epitopes, 61 novel epitopes targeting nine different NiV proteins were not used before for vaccine design. Codon optimization for the cDNA of both the designed MEVs might ensure high expression potential in the human cell line as stable proteins. Both MEVs carry potential B cell linear epitope overlapping regions, B cell discontinuous epitopes as well as IFN-γ inducing epitopes. Additional criteria such as sequence consensus amongst CTL, HTL and B Cell epitopes was implemented for the design of final constructs constituting MEVs. Hence, the designed MEVs carry the potential to elicit cell-mediated as well as humoral immune response. Selected overlapping CTL and HTL epitopes were validated for their stable molecular interactions with HLA class I and II alleles and in case of CTL epitopes with human Transporter Associated with antigen Processing (TAP) cavity. The structure based epitope cross validation for interaction with TAP cavity was used as another criteria choosing final epitopes for NiV MEVs. Finally, human Beta-defensin 2 and Beta-defensin 3 were used as adjuvants to enhance the immune response of both the MEVs. Molecular dynamics simulation studies of MEVs-TLR3 ectodomain (Human Toll-Like Receptor 3) complex indicated the stable molecular interaction. We conclude that the MEVs designed and in silico validated here could be highly potential vaccine candidates to combat NiV infections, with great effectiveness, high specificity and large human population coverage worldwide.


Subject(s)
Henipavirus Infections , Viral Vaccines , beta-Defensins , Humans , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Molecular Docking Simulation , Toll-Like Receptor 3 , Vaccines, Subunit , HLA Antigens/immunology
SELECTION OF CITATIONS
SEARCH DETAIL