Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Ultrasound Med Biol ; 32(4): 503-12, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16616597

ABSTRACT

The Björk-Shiley (BScc) mechanical heart valve has extensively been used in surgery from 1979 to 1986. There is, compared with equivalent valve types, increased occurrence of unexpected mechanical failure of the outlet strut of the valve, with a high incidence of mortality, when it occurs. Many approaches have been attempted to noninvasively determine BScc valve integrity. None of the approaches resulted in adequate assessment, mostly due to a lack of either sensitivity or specificity demonstrated in in vitro and/or in vivo studies. In our study we analyze leg movement of the BScc valves outlet strut during the cardiac cycle with ultrasound. For a broken strut, the movement of both legs will be significantly different, whereas the difference will be negligible for an intact strut. BScc valves were mounted in the mitral position in an in vitro pulse duplicator system. A focused single-element transducer was used to direct ultrasound on a leg of the outlet strut. Correlation-based time delay estimation was used to estimate differences in time of flight of the outlet strut echoes to determine outlet strut leg movement. The movement of an intact valve and a valve with a single-leg fracture with both ends grating against each other (SLF), the most difficult fracture to diagnose, has been studied. The results showed no significant difference in movement between both legs of the outlet strut of the intact BScc valve (amplitude of movement 9.2 microm +/- 0.1 microm). Whereas for the defective valve, the amplitude of movement of the broken leg of the SLF valve was 12 microm +/- 1.6 microm vs. 8.6 microm +/- 0.1 microm for the intact leg. In conclusion, the proposed method has shown to be feasible in vitro and has potentials for in vivo detection of BScc valve outlet strut fracture.


Subject(s)
Heart Valve Prosthesis , Heart Valves/diagnostic imaging , Prosthesis Failure , Echocardiography/instrumentation , Echocardiography/methods , Feasibility Studies , Humans , Models, Cardiovascular , Motion
2.
Ultrasound Med Biol ; 31(1): 39-44, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15653229

ABSTRACT

Abnormal biomechanical properties of the sacroiliac joints are believed to be related to low back and pelvic pain. Presently, physiotherapists judge the condition of the sacroiliac joints by function and provocation tests, and palpation. No objective measuring device is available. Research is ongoing to identify the biomechanical properties of the sacroiliac joints from the dynamic behaviour of the pelvic bones. A new concept based on ultrasound (US) for the measurement of bone vibration is under investigation. The objective of this study was to validate this concept on a physical model and to assess the applicability in vivo. A model consisting of a piezo shaker covered by a layer of US transmission gel (representing bone and soft tissue) has been used. A packet of US detection signals is directed onto the shaker and correlation-based processing is used to estimate the difference in time-of-flight of their echoes. These variations of time are used to compute the displacement of the shaker at each pulse reflection. To assess the validity of our US technique, we compared the obtained measurements with the readings of the built-in strain gauge sensor. The experimental procedure has been tested on a volunteer where low-frequency excitation was provided through the ilium and vibration detected on the sacrum and ilia. The results demonstrated that the correlation-based approach is capable of reproducing the piezo shaker displacements with high accuracy (+/- 7%). Vibration amplitudes from 0.25 microm to 3 microm could be measured. The US technique was able to detect bone vibration in vivo. In conclusion, the principle based on US waves can be used to develop a new measurement tool, instrumental in studying the relation between the biomechanical properties of the sacroiliac joints and low back pain.


Subject(s)
Low Back Pain/diagnostic imaging , Sacroiliac Joint/diagnostic imaging , Biomechanical Phenomena , Elasticity , Feasibility Studies , Humans , Ilium/diagnostic imaging , Ilium/physiology , Low Back Pain/etiology , Low Back Pain/physiopathology , Models, Anatomic , Sacroiliac Joint/physiopathology , Ultrasonography , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL