Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Biol Chem ; 298(11): 102584, 2022 11.
Article in English | MEDLINE | ID: mdl-36228719

ABSTRACT

Expression of Protein tyrosine kinase 6 (PTK6) is upregulated in several human solid tumors, and it has oncogenic roles in prostate and breast cancer. PTK6 and SRC kinase are distantly related, share many substrates, and often regulate the same signaling pathways, but whether they interact to regulate signaling is not well understood. We characterized crosstalk between PTK6 and SRC and show that PTK6 can directly phosphorylate SRC to promote its activation. Stable knockdown of PTK6 in multiple cancer cell lines leads to decreased activating phosphorylation of SRC. We show that coexpression of kinase-dead SRC and active PTK6 in mouse embryonic fibroblasts lacking Src, Yes, and Fyn results in activating phosphorylation of SRC. However, there is no reciprocal effect, because active SRC does not promote activating phosphorylation of PTK6. Overexpression of active PTK6 maintained activation of epidermal growth factor receptor (EGFR), AKT, and FAK, but not SHP2 and ERK1/2 in cells with knockdown of SRC. Both PTK6 and SRC are regulated by EGFR, and its inhibition with erlotinib downregulated PTK6 and to a lesser degree SRC activation in LNCaP cells that overexpress active PTK6. Erlotinib treatment also led to AKT inhibition, but overexpression of active PTK6 prevented this. Our data demonstrate overlapping and unique functions for PTK6 and SRC. Finally, we show that PTK6 and SRC are coexpressed in subsets of human prostate and breast cancer cells, and active PTK6 and active SRC colocalize in prostate cancer, supporting a role for PTK6 in promoting SRC activity in cancer.


Subject(s)
Breast Neoplasms , src-Family Kinases , Animals , Male , Mice , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride , Fibroblasts/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
2.
J Biol Inorg Chem ; 25(2): 253-265, 2020 03.
Article in English | MEDLINE | ID: mdl-32020293

ABSTRACT

The reactions of four cymene-capped ruthenium(II) compounds with pro-apoptotic protein, cytochrome c (Cyt), and anti-proliferative protein lysozyme (Ly) in carbonate buffer were investigated by ESI-MS, UV-vis absorption, and CD spectroscopy. The complexes with two chloride ligands (C2 and C3) were more reactive toward proteins than those with only one (C1 and C4), and the complex with S,N-chelating ligand (C4) was less reactive than one with O,N-chelating ligand (C1). Dehalogenated complexes are most likely species, initially coordinating proteins for all tested complexes. During the time, protein adducts vividly exchanged non-arene organic ligand L with CO32- and OH-, while cymene moiety was retained. In water, only dehalogenated adducts were identified suggesting that in vivo, in the presence of various anions, dynamic ligand exchange could generate different intermediate protein species. Although all complexes reduced Cyt, the reduction was not dependent on their reactivity to protein, implying that initially noncovalent binding to Cyt occurs, causing its reduction, followed by coordination to protein. Cyt reduction was accompanied with rupture of ferro-Met 80 and occupation of this hem coordination site by a histidine His-33/26. Therefore, in Cyt with C2 and C3, less intensive reduction of hem iron leaves more unoccupied target residues for Ru coordination, leading to more efficient formation of covalent adducts, in comparison to C1 and C4. This study contributes to development of new protein-targeted Ru(II) cymene complexes, and to the design of new cancer therapies based on targeted delivery of Ru(II) arene complexes bound on pro-apoptotic/anti-proliferative proteins as vehicles.


Subject(s)
Coordination Complexes/chemistry , Cymenes/chemistry , Cytochromes c/chemistry , Muramidase/chemistry , Ruthenium/chemistry , Molecular Conformation , Muramidase/metabolism
3.
Oncogene ; 42(31): 2374-2385, 2023 07.
Article in English | MEDLINE | ID: mdl-37386128

ABSTRACT

Tuft cells are chemosensory epithelial cells that increase in number following infection or injury to robustly activate the innate immune response to alleviate or promote disease. Recent studies of castration resistant prostate cancer and its subtype, neuroendocrine prostate cancer, revealed Pou2f3+ populations in mouse models. The transcription factor Pou2f3 is a master regulator of the tuft cell lineage. We show that tuft cells are upregulated early during prostate cancer development, and their numbers increase with progression. Cancer-associated tuft cells in the mouse prostate express DCLK1, COX1, COX2, while human tuft cells express COX1. Mouse and human tuft cells exhibit strong activation of signaling pathways including EGFR and SRC-family kinases. While DCLK1 is a mouse tuft cell marker, it is not present in human prostate tuft cells. Tuft cells that appear in mouse models of prostate cancer display genotype-specific tuft cell gene expression signatures. Using bioinformatic analysis tools and publicly available datasets, we characterized prostate tuft cells in aggressive disease and highlighted differences between tuft cell populations. Our findings indicate that tuft cells contribute to the prostate cancer microenvironment and may promote development of more advanced disease. Further research is needed to understand contributions of tuft cells to prostate cancer progression.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Mice , Humans , Animals , Prostate/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Epithelial Cells/metabolism , Tumor Microenvironment , Doublecortin-Like Kinases
SELECTION OF CITATIONS
SEARCH DETAIL