Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 51(7): 3017-3029, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36796796

ABSTRACT

Here, we present DeepBIO, the first-of-its-kind automated and interpretable deep-learning platform for high-throughput biological sequence functional analysis. DeepBIO is a one-stop-shop web service that enables researchers to develop new deep-learning architectures to answer any biological question. Specifically, given any biological sequence data, DeepBIO supports a total of 42 state-of-the-art deep-learning algorithms for model training, comparison, optimization and evaluation in a fully automated pipeline. DeepBIO provides a comprehensive result visualization analysis for predictive models covering several aspects, such as model interpretability, feature analysis and functional sequential region discovery. Additionally, DeepBIO supports nine base-level functional annotation tasks using deep-learning architectures, with comprehensive interpretations and graphical visualizations to validate the reliability of annotated sites. Empowered by high-performance computers, DeepBIO allows ultra-fast prediction with up to million-scale sequence data in a few hours, demonstrating its usability in real application scenarios. Case study results show that DeepBIO provides an accurate, robust and interpretable prediction, demonstrating the power of deep learning in biological sequence functional analysis. Overall, we expect DeepBIO to ensure the reproducibility of deep-learning biological sequence analysis, lessen the programming and hardware burden for biologists and provide meaningful functional insights at both the sequence level and base level from biological sequences alone. DeepBIO is publicly available at https://inner.wei-group.net/DeepBIO.


The development of next-generation sequencing techniques has led to an exponential increase in the amount of biological sequence data accessible. It naturally poses a fundamental challenge­how to build the relationships from such large-scale sequences to their functions. In this work, we present DeepBIO, the first-of-its-kind automated and interpretable deep-learning platform for high-throughput biological sequence functional analysis. It enables researchers to develop new deep-learning architectures to answer any biological question in a fully automated pipeline. We expect DeepBIO to ensure the reproducibility of deep-learning-based biological sequence analysis, lessen the programming and hardware burden for biologists and provide meaningful functional insights at both the sequence level and base level from biological sequences alone.


Subject(s)
Deep Learning , Reproducibility of Results , Algorithms , High-Throughput Nucleotide Sequencing
2.
J Proteome Res ; 23(7): 2532-2541, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38902972

ABSTRACT

Metabolic dysfunction is recognized as a contributing factor in the pathogenesis of wet age-related macular degeneration (wAMD). However, the specific metabolism-related proteins implicated in wAMD remain elusive. In this study, we assessed the expression profiles of 92 metabolism-related proteins in aqueous humor (AH) samples obtained from 44 wAMD patients and 44 cataract control patients. Our findings revealed significant alterations in the expression of 60 metabolism-related proteins between the two groups. Notably, ANGPTL7 and METRNL displayed promising diagnostic potential for wAMD, as evidenced by area under the curve values of 0.88 and 0.85, respectively. Subsequent validation studies confirmed the upregulation of ANGPTL7 and METRNL in the AH of wAMD patients and in choroidal neovascularization (CNV) models. Functional assays revealed that increased ANGPTL7 and METRNL played a pro-angiogenic role in endothelial biology by promoting endothelial cell proliferation, migration, tube formation, and spouting in vitro. Moreover, in vivo studies revealed the pro-angiogenic effects of ANGPTL7 and METRNL in CNV formation. In conclusion, our findings highlight the association between elevated ANGPTL7 and METRNL levels and wAMD, suggesting their potential as novel predictive and diagnostic biomarkers for this condition. These results underscore the significance of ANGPTL7 and METRNL in the context of wAMD pathogenesis and offer new avenues for future research and therapeutic interventions.


Subject(s)
Angiopoietin-Like Protein 7 , Angiopoietin-like Proteins , Aqueous Humor , Biomarkers , Wet Macular Degeneration , Aqueous Humor/metabolism , Humans , Biomarkers/metabolism , Male , Wet Macular Degeneration/metabolism , Wet Macular Degeneration/genetics , Female , Angiopoietin-like Proteins/metabolism , Angiopoietin-like Proteins/genetics , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/genetics , Choroidal Neovascularization/pathology , Aged , Cell Proliferation , Animals , Cell Movement , Mice
3.
J Proteome Res ; 23(10): 4674-4683, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39319515

ABSTRACT

Metabolic dysfunction plays a crucial role in the pathogenesis of glaucoma. In this study, we used Olink proteomics profiling to identify potential biomarkers for glaucoma. Aqueous humor samples were obtained from 44 cataract patients and 44 glaucoma patients. We identified 84 differentially expressed metabolic proteins between the glaucoma and the cataract group. Gene Ontology enrichment analysis highlighted the involvement of these proteins in ER-associated degradation pathway, regulation of interleukin-13 production, and DNA damage response pathway. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further revealed links to pathways, such as tyrosine and pyrimidine metabolism. Among these, ALDH1A1 emerged as a candidate with a significant diagnostic potential for glaucoma. ALDH1A1 also exhibited a prominent role in the protein-protein interaction network. Elevated levels of ALDH1A1 in the aqueous humor of glaucoma patients were confirmed both in clinical samples and in an ischemia/reperfusion model. Functional assays confirmed that elevated ALDH1A1 induced retinal ganglion cell (RGC) apoptosis in vitro and demonstrated its pro-apoptotic role in RGCs in vivo. Collectively, these findings not only underscore the significance of ALDH1A1 in glaucoma but also provide valuable insights into clinical decision-making and therapeutic strategies.


Subject(s)
Aldehyde Dehydrogenase 1 Family , Aqueous Humor , Biomarkers , Glaucoma , Proteomics , Humans , Glaucoma/metabolism , Glaucoma/genetics , Glaucoma/pathology , Biomarkers/metabolism , Proteomics/methods , Aqueous Humor/metabolism , Aldehyde Dehydrogenase 1 Family/metabolism , Aldehyde Dehydrogenase 1 Family/genetics , Retinal Dehydrogenase/metabolism , Retinal Dehydrogenase/genetics , Female , Male , Protein Interaction Maps , Apoptosis/genetics , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Aged , Middle Aged , Animals , Cataract/metabolism , Cataract/genetics
4.
Mol Med ; 30(1): 66, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773377

ABSTRACT

BACKGROUND: The current treatment of osteogenesis imperfecta (OI) is imperfect. Our study thus delves into the potential of using Dickkopf-1 antisense (DKK1-AS) to treat OI. METHODS: We analysed serum DKK1 levels and their correlation with lumbar spine and hip T-scores in OI patients. Comparative analyses were conducted involving bone marrow stromal cells (BMSCs) and bone tissues from wild-type mice, untreated OI mice, and OI mice treated with DKK1-ASor DKK1-sense (DKK1-S). RESULTS: Significant inverse correlations were noted between serum DKK1 levels and lumbar spine (correlation coefficient = - 0.679, p = 0.043) as well as hip T-scores (correlation coefficient = - 0.689, p = 0.042) in OI patients. DKK1-AS improved bone mineral density (p = 0.002), trabecular bone volume/total volume fraction (p < 0.001), trabecular separation (p = 0.010), trabecular thickness (p = 0.001), trabecular number (p < 0.001), and cortical thickness (p < 0.001) in OI mice. DKK1-AS enhanced the transcription of collagen 1α1, osteocalcin, runx2, and osterix in BMSC from OI mice (all p < 0.001), resulting in a higher von Kossa-stained matrix area (p < 0.001) in ex vivo osteogenesis assays. DKK1-AS also reduced osteoclast numbers (p < 0.001), increased ß-catenin and T-cell factor 4 immunostaining reactivity (both p < 0.001), enhanced mineral apposition rate and bone formation rate per bone surface (both p < 0.001), and decreased osteoclast area (p < 0.001) in OI mice. DKK1-AS upregulated osteoprotegerin and downregulated nuclear factor-kappa B ligand transcription (both p < 0.001). Bone tissues from OI mice treated with DKK1-AS exhibited significantly higher breaking force compared to untreated OI mice (p < 0.001). CONCLUSIONS: Our study elucidates that DKK1-AS has the capability to enhance bone mechanical properties, restore the transcription of osteogenic genes, promote osteogenesis, and inhibit osteoclastogenesis in OI mice.


Subject(s)
Disease Models, Animal , Intercellular Signaling Peptides and Proteins , Osteogenesis Imperfecta , Animals , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Osteogenesis Imperfecta/metabolism , Mice , Humans , Female , Male , Bone Density , Osteogenesis , Mesenchymal Stem Cells/metabolism
5.
Molecules ; 29(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893469

ABSTRACT

Hepatocellular carcinoma (HCC) results in the abnormal regulation of cellular metabolic pathways. Constraint-based modeling approaches can be utilized to dissect metabolic reprogramming, enabling the identification of biomarkers and anticancer targets for diagnosis and treatment. In this study, two genome-scale metabolic models (GSMMs) were reconstructed by employing RNA sequencing expression patterns of hepatocellular carcinoma (HCC) and their healthy counterparts. An anticancer target discovery (ACTD) framework was integrated with the two models to identify HCC targets for anticancer treatment. The ACTD framework encompassed four fuzzy objectives to assess both the suppression of cancer cell growth and the minimization of side effects during treatment. The composition of a nutrient may significantly affect target identification. Within the ACTD framework, ten distinct nutrient media were utilized to assess nutrient uptake for identifying potential anticancer enzymes. The findings revealed the successful identification of target enzymes within the cholesterol biosynthetic pathway using a cholesterol-free cell culture medium. Conversely, target enzymes in the cholesterol biosynthetic pathway were not identified when the nutrient uptake included a cholesterol component. Moreover, the enzymes PGS1 and CRL1 were detected in all ten nutrient media. Additionally, the ACTD framework comprises dual-group representations of target combinations, pairing a single-target enzyme with an additional nutrient uptake reaction. Additionally, the enzymes PGS1 and CRL1 were identified across the ten-nutrient media. Furthermore, the ACTD framework encompasses two-group representations of target combinations involving the pairing of a single-target enzyme with an additional nutrient uptake reaction. Computational analysis unveiled that cell viability for all dual-target combinations exceeded that of their respective single-target enzymes. Consequently, integrating a target enzyme while adjusting an additional exchange reaction could efficiently mitigate cell proliferation rates and ATP production in the treated cancer cells. Nevertheless, most dual-target combinations led to lower side effects in contrast to their single-target counterparts. Additionally, differential expression of metabolites between cancer cells and their healthy counterparts were assessed via parsimonious flux variability analysis employing the GSMMs to pinpoint potential biomarkers. The variabilities of the fluxes and metabolite flow rates in cancer and healthy cells were classified into seven categories. Accordingly, two secretions and thirteen uptakes (including eight essential amino acids and two conditionally essential amino acids) were identified as potential biomarkers. The findings of this study indicated that cancer cells exhibit a higher uptake of amino acids compared with their healthy counterparts.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Models, Biological , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Metabolic Networks and Pathways , Cell Proliferation/drug effects
6.
BMC Bioinformatics ; 24(1): 364, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37759157

ABSTRACT

In this paper, a fuzzy hierarchical optimization framework is proposed for identifying potential antiviral targets for treating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the heart. The proposed framework comprises four objectives for evaluating the elimination of viral biomass growth and the minimization of side effects during treatment. In the application of the framework, Dulbecco's modified eagle medium (DMEM) and Ham's medium were used as uptake nutrients on an antiviral target discovery platform. The prediction results from the framework reveal that most of the antiviral enzymes in the aforementioned media are involved in fatty acid metabolism and amino acid metabolism. However, six enzymes involved in cholesterol biosynthesis in Ham's medium and three enzymes involved in glycolysis in DMEM are unable to eliminate the growth of the SARS-CoV-2 biomass. Three enzymes involved in glycolysis, namely BPGM, GAPDH, and ENO1, in DMEM combine with the supplemental uptake of L-cysteine to increase the cell viability grade and metabolic deviation grade. Moreover, six enzymes involved in cholesterol biosynthesis reduce and fail to reduce viral biomass growth in a culture medium if a cholesterol uptake reaction does not occur and occurs in this medium, respectively.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cholesterol
7.
Diabetologia ; 66(5): 913-930, 2023 05.
Article in English | MEDLINE | ID: mdl-36692509

ABSTRACT

AIMS/HYPOTHESIS: The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS: We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS: Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION: Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Sirtuin 3 , Animals , Humans , Mice , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Insulin Resistance/genetics , Lipid Metabolism , Lipids , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism
8.
Bioinformatics ; 38(9): 2602-2611, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35212728

ABSTRACT

MOTIVATION: The development of microscopic imaging techniques enables us to study protein subcellular locations from the tissue level down to the cell level, contributing to the rapid development of image-based protein subcellular location prediction approaches. However, existing methods suffer from intrinsic limitations, such as poor feature representation ability, data imbalanced issue, and multi-label classification problem, greatly impacting the model performance and generalization. RESULTS: In this study, we propose MSTLoc, a novel multi-scale end-to-end deep learning model to identify protein subcellular locations in the imbalanced multi-label immunohistochemistry (IHC) images dataset. In our MSTLoc, we deploy a deep convolution neural network to extract multi-scale features from the IHC images, aggregate the high-level features and low-level features via feature fusion to sufficiently exploit the dependencies amongst various subcellular locations, and utilize Vision Transformer (ViT) to model the relationship amongst the features and enhance the feature representation ability. We demonstrate that the proposed MSTLoc achieves better performance than current state-of-the-art models in multi-label subcellular location prediction. Through feature visualization and interpretation analysis, we demonstrate that as compared with the hand-crafted features, the multi-scale deep features learnt from our model exhibit better ability in capturing discriminative patterns underlying protein subcellular locations, and the features from different scales are complementary for the improvement in performance. Finally, case study results indicate that our MSTLoc can successfully identify some biomarkers from proteins that are closely involved with cancer development. AVAILABILITY AND IMPLEMENTATION: For the convenient use of our method, we establish a user-friendly webserver available at http://server.wei-group.net/MSTLoc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Deep Learning , Immunohistochemistry , Protein Transport , Proteins/metabolism , Neural Networks, Computer
9.
Int J Mol Sci ; 24(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298111

ABSTRACT

Spinal epidural fibrosis is one of the typical features attributable to failed back surgery syndrome, with excessive scar development in the dura and nerve roots. The microRNA-29 family (miR-29s) has been found to act as a fibrogenesis-inhibitory factor that reduces fibrotic matrix overproduction in various tissues. However, the mechanistic basis of miRNA-29a underlying the overabundant fibrotic matrix synthesis in spinal epidural scars post-laminectomy remained elusive. This study revealed that miR-29a attenuated lumbar laminectomy-induced fibrogenic activity, and epidural fibrotic matrix formation was significantly lessened in the transgenic mice (miR-29aTg) as compared with wild-type mice (WT). Moreover, miR-29aTg limits laminectomy-induced damage and has also been demonstrated to detect walking patterns, footprint distribution, and moving activity. Immunohistochemistry staining of epidural tissue showed that miR-29aTg was a remarkably weak signal of IL-6, TGF-ß1, and DNA methyltransferase marker, Dnmt3b, compared to the wild-type mice. Taken together, these results have further strengthened the evidence that miR-29a epigenetic regulation reduces fibrotic matrix formation and spinal epidural fibrotic activity in surgery scars to preserve the integrity of the spinal cord core. This study elucidates and highlights the molecular mechanisms that reduce the incidence of spinal epidural fibrosis, eliminating the risk of gait abnormalities and pain associated with laminectomy.


Subject(s)
Interleukin-6 , MicroRNAs , Mice , Animals , Interleukin-6/genetics , Transforming Growth Factor beta1/genetics , Laminectomy/adverse effects , Cicatrix/genetics , Epigenesis, Genetic , MicroRNAs/genetics , Fibrosis , Mice, Transgenic , Gait
10.
Cell Commun Signal ; 20(1): 200, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36575468

ABSTRACT

BACKGROUND: Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS: To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS: We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of ß-catenin, cyclin D1 and c-Myc via GSK3ß/ß-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of ß-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/ß-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS: BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.


Subject(s)
Apoptosis , Colorectal Neoplasms , Histone Deacetylase Inhibitors , Temozolomide , Humans , beta Catenin/metabolism , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Histone Deacetylases/metabolism , Repressor Proteins/metabolism , Temozolomide/pharmacology , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway , Histone Deacetylase Inhibitors/pharmacology , HT29 Cells
11.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163556

ABSTRACT

A high-fat diet is responsible for hepatic fat accumulation that sustains chronic liver damage and increases the risks of steatosis and hepatocellular carcinoma (HCC). MicroRNA-29a (miR-29a), a key regulator of cellular behaviors, is present in anti-fibrosis and modulator tumorigenesis. However, the increased transparency of the correlation between miR-29a and the progression of human HCC is still further investigated. In this study, we predicted HIF-1α and ANGPT2 as regulators of HCC by the OncoMir cancer database and showed a strong positive correlation with HIF-1α and ANGPT2 gene expression in HCC patients. Mice fed the western diet (WD) while administered CCl4 for 25 weeks induced chronic liver damage and higher HCC incidence than without fed WD mice. HCC section staining revealed signaling upregulation in ki67, severe fibrosis, and steatosis in WD and CCl4 mice and detected Col3a1 gene expressions. HCC tissues significantly attenuated miR-29a but increased in HIF-1α, ANGPT2, Lox, Loxl2, and VEGFA expression. Luciferase activity analysis confirms that miR-29a specific binding 3'UTR of HIF-1α and ANGPT2 to repress expression. In summary, miR-29a control HIF-1α and ANGPT2 signaling in HCC formation. This study insight into a novel molecular pathway by which miR-29a targeting HIF-1α and ANGPT2 counteracts the incidence of HCC development.


Subject(s)
Angiopoietin-2/genetics , Carcinoma, Hepatocellular/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Liver Neoplasms/pathology , MicroRNAs/genetics , 3' Untranslated Regions , Angiopoietin-2/metabolism , Animals , Carbon Tetrachloride/adverse effects , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Proliferation , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Incidence , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Signal Transduction
12.
Int J Mol Sci ; 23(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009003

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, consists of fat deposited (steatosis) in the liver due to causes besides excessive alcohol use. The folding activity of heat shock protein 60 (HSP60) has been shown to protect mitochondria from proteotoxicity under various types of stress. In this study, we investigated whether HSP60 could ameliorate experimental high-fat diet (HFD)-induced obesity and hepatitis and explored the potential mechanism in mice. The results uncovered that HSP60 gain not only alleviated HFD-induced body weight gain, fat accumulation, and hepatocellular steatosis, but also glucose tolerance and insulin resistance according to intraperitoneal glucose tolerance testing and insulin tolerance testing in HSP60 transgenic (HSP60Tg) compared to wild-type (WT) mice by HFD. Furthermore, overexpression of HSP60 in the HFD group resulted in inhibited release of mitochondrial dsRNA (mt-dsRNA) compared to WT mice. In addition, overexpression of HSP60 also inhibited the activation of toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5), and phosphorylated-interferon regulatory factor 3 (p-IRF3), as well as inflammatory biomarkers such as mRNA of il-1ß and il-6 expression in the liver in response to HFD. The in vitro study also confirmed that the addition of HSP-60 mimics in HepG2 cells led to upregulated expression level of HSP60 and restricted release of mt-dsRNA, as well as downregulated expression levels of TLR3, MDA5, and pIRF3. This study provides novel insight into a hepatoprotective effect, whereby HSP60 inhibits the release of dsRNA to repress the TLR3/MDA5/pIRF3 pathway in the context of NAFLD or hepatic inflammation. Therefore, HSP60 may serve as a possible therapeutic target for improving NAFLD.


Subject(s)
Chaperonin 60/metabolism , Gene Expression Regulation , Mitochondria/genetics , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Double-Stranded/genetics , Adipose Tissue/metabolism , Animals , Biomarkers , Body Weight , Chaperonin 60/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Disease Susceptibility , Fluorescent Antibody Technique , Glucose/metabolism , Hepatitis/etiology , Hepatitis/metabolism , Hepatitis/pathology , Immunohistochemistry , Insulin Resistance , Lipid Metabolism , Mice , Non-alcoholic Fatty Liver Disease/pathology , Toll-Like Receptor 3/metabolism
13.
Int J Mol Sci ; 23(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35563498

ABSTRACT

Increasing extracellular osmolarity 100 mOsm/kg above plasma level to the physiological levels for cartilage induces chondrogenic marker expression and the differentiation of chondroprogenitor cells. The calcineurin inhibitor FK506 has been reported to modulate the hypertrophic differentiation of primary chondrocytes under such conditions, but the molecular mechanism has remained unclear. We aimed at clarifying its role. Chondrocyte cell lines and primary cells were cultured under plasma osmolarity and chondrocyte-specific in situ osmolarity (+100 mOsm, physosmolarity) was increased to compare the activation of nuclear factor of activated T-cells 5 (NFAT5). The effects of osmolarity and FK506 on calcineurin activity, cell proliferation, extracellular matrix quality, and BMP- and TGF-ß signaling were analyzed using biochemical, gene, and protein expression, as well as reporter and bio-assays. NFAT5 translocation was similar in chondrocyte cell lines and primary cells. High supraphysiological osmolarity compromised cell proliferation, while physosmolarity or FK506 did not, but in combination increased proteoglycan and collagen expression in chondrocytes in vitro and in situ. The expression of the TGF-ß-inducible protein TGFBI, as well as chondrogenic (SOX9, Col2) and terminal differentiation markers (e.g., Col10) were affected by osmolarity. Particularly, the expression of minor collagens (e.g., Col9, Col11) was affected. The inhibition of the FK506-binding protein suggests modulation at the TGF-ß receptor level, rather than calcineurin-mediated signaling, as a cause. Physiological osmolarity promotes terminal chondrogenic differentiation of progenitor cells through the sensitization of the TGF-ß superfamily signaling at the type I receptor. While hyperosmolarity alone facilitates TGF-ß superfamily signaling, FK506 further enhances signaling by releasing the FKBP12 break from the type I receptor to improve collagenous marker expression. Our results help explain earlier findings and potentially benefit future cell-based cartilage repair strategies.


Subject(s)
Calcineurin Inhibitors , Tacrolimus , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , Cell Differentiation , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis , Tacrolimus/pharmacology , Transforming Growth Factor beta/metabolism
14.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077084

ABSTRACT

Recent studies have shown dysbiosis is associated with inflammatory bowel disease (IBD). However, trying to restore microbial diversity via fecal microbiota transplantation (FMT) or probiotic intervention fails to achieve clinical benefit in IBD patients. We performed a probiotic intervention on a simulated IBD murine model to clarify their relationship. IBD was simulated by the protocol of azoxymethane and dextran sodium sulfate (AOM/DSS) to set up a colitis and colitis-associated neoplasm model on BALB/c mice. A single probiotic intervention using Clostridium butyricum Miyairi (CBM) on AOM/DSS mice to clarify the role of probiotic in colitis, colitis-associated neoplasm, gut microbiota, and immune cytokines was performed. We found dysbiosis occurred in AOM/DSS mice. The CBM intervention on AOM/DSS mice failed to improve colitis and colitis-associated neoplasms but changed microbial composition and unexpectedly increased expression of proinflammatory IL-17A in rectal tissue. We hypothesized that the probiotic intervention caused dysbiosis. To clarify the result, we performed inverse FMT using feces from AOM/DSS mice to normal recipients to validate the pathogenic effect of dysbiosis from AOM/DSS mice and found mice on inverse FMT did develop colitis and colon neoplasms. We presumed the probiotic intervention to some extent caused dysbiosis as inverse FMT. The role of probiotics in IBD requires further elucidation.


Subject(s)
Colitis-Associated Neoplasms , Colitis , Inflammatory Bowel Diseases , Probiotics , Animals , Azoxymethane/toxicity , Colitis/chemically induced , Colitis/therapy , Dextran Sulfate/toxicity , Disease Models, Animal , Dysbiosis/therapy , Inflammatory Bowel Diseases/therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Probiotics/pharmacology , Sulfates
15.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502380

ABSTRACT

Biophysical stimulation alters bone-forming cell activity, bone formation and remodeling. The effect of piezoelectric microvibration stimulation (PMVS) intervention on osteoporosis development remains uncertain. We investigated whether 60 Hz, 120 Hz, and 180 Hz PMVS (0.05 g, 20 min/stimulation, 3 stimulations/week for 4 consecutive weeks) intervention affected bone integrity in ovariectomized (OVX) mice or osteoblastic activity. PMVS (120 Hz)-treated OVX mice developed fewer osteoporosis conditions, including bone mineral density loss and trabecular microstructure deterioration together with decreased serum resorption marker CTX-1 levels, as compared to control OVX animals. The biomechanical strength of skeletal tissue was improved upon 120 Hz PMVS intervention. This intervention compromised OVX-induced sparse trabecular bone morphology, osteoblast loss, osteoclast overburden, and osteoclast-promoting cytokine RANKL immunostaining and reversed osteoclast inhibitor OPG immunoreactivity. Osteoblasts in OVX mice upon PMVS intervention showed strong Wnt3a immunoreaction and weak Wnt inhibitor Dkk1 immunostaining. In vitro, PMVS reversed OVX-induced loss in von Kossa-stained mineralized nodule formation, Runx2, and osteocalcin expression in primary bone-marrow stromal cells. PMVS also promoted mechanoreceptor Piezo1 expression together with increased microRNA-29a and Wnt3a expression, whereas Dkk1 rather than SOST expression was repressed in MC3T3-E1 osteoblasts. Taken together, PMVS intervention promoted Piezo1, miR-29a, and Wnt signaling to upregulate osteogenic activity and repressed osteoclastic bone resorption, delaying estrogen deficiency-induced loss in bone mass and microstructure. This study highlights a new biophysical remedy for osteoporosis.


Subject(s)
Osteoblasts/metabolism , Osteoporosis/therapy , Ultrasonic Therapy/methods , Animals , Biomechanical Phenomena , Bone Density/drug effects , Bone Resorption/metabolism , Bone and Bones/metabolism , Calcification, Physiologic , Cell Differentiation/drug effects , Estrogens/metabolism , Female , Ion Channels/metabolism , Ion Channels/physiology , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/physiology , Osteoclasts/metabolism , Osteogenesis/drug effects , Osteoporosis/metabolism , Ovariectomy , Signal Transduction , Ultrasonic Waves , Wnt3A Protein/metabolism
16.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281226

ABSTRACT

Patients with Rett syndrome (RTT) show severe difficulties with communication, social withdrawl, and learning. Music-based interventions improve social interaction, communication skills, eye contact, and physical skills and reduce seizure frequency in patients with RTT. This study aimed to investigate the mechanism by which music-based interventions compromise sociability impairments in mecp2 null/y mice as an experimental RTT model. Male mecp2 null/y mice and wild-type mice (24 days old) were randomly divided into control, noise, and music-based intervention groups. Mice were exposed to music or noise for 6 h/day for 3 consecutive weeks. Behavioral patterns, including anxiety, spontaneous exploration, and sociability, were characterized using open-field and three-chamber tests. BDNF, TrkB receptor motif, and FNDC5 expression in the prefrontal cortex (PFC), hippocampus, basal ganglia, and amygdala were probed using RT-PCR or immunoblotting. mecp2 null/y mice showed less locomotion in an open field than wild-type mice. The social novelty rather than the sociability of these animals increased following a music-based intervention, suggesting that music influenced the mecp2-deletion-induced social interaction repression rather than motor deficit. Mechanically, the loss of BDNF signaling in the prefrontal cortex and hippocampal regions, but not in the basal ganglia and amygdala, was compromised following the music-based intervention in mecp2 null/y mice, whereas TrkB signaling was not significantly changed in either region. FNDC5 expression in the prefrontal cortex region in mecp2 null/y mice also increased following the music-based intervention. Collective evidence reveals that music-based interventions improve mecp2-loss-induced social dysfunction. BDNF and FNDC5 signaling in the prefrontal cortex region mediates the music-based-intervention promotion of social interactions. This study gives new insight into the mechanisms underlying the improvement of social behaviors in mice suffering from experimental Rett syndrome following a music-based intervention.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Membrane Glycoproteins/metabolism , Music Therapy , Prefrontal Cortex/metabolism , Receptor, trkB/metabolism , Rett Syndrome/therapy , Animals , Disease Models, Animal , Male , Mice , Rett Syndrome/metabolism , Rett Syndrome/psychology , Social Behavior
17.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502056

ABSTRACT

Skeletal tissue involves systemic adipose tissue metabolism and energy expenditure. MicroRNA signaling controls high-fat diet (HFD)-induced bone and fat homeostasis dysregulation remains uncertain. This study revealed that transgenic overexpression of miR-29a under control of osteocalcin promoter in osteoblasts (miR-29aTg) attenuated HFD-mediated body overweight, hyperglycemia, and hypercholesterolemia. HFD-fed miR-29aTg mice showed less bone mass loss, fatty marrow, and visceral fat mass together with increased subscapular brown fat mass than HFD-fed wild-type mice. HFD-induced O2 underconsumption, respiratory quotient repression, and heat underproduction were attenuated in miR-29aTg mice. In vitro, miR-29a overexpression repressed transcriptomic landscapes of the adipocytokine signaling pathway, fatty acid metabolism, and lipid transport, etc., of bone marrow mesenchymal progenitor cells. Forced miR-29a expression promoted osteogenic differentiation but inhibited adipocyte formation. miR-29a signaling promoted brown/beige adipocyte markers Ucp-1, Pgc-1α, P2rx5, and Pat2 expression and inhibited white adipocyte markers Tcf21 and Hoxc9 expression. The microRNA also reduced peroxisome formation and leptin expression during adipocyte formation and downregulated HFD-induced leptin expression in bone tissue. Taken together, miR-29a controlled leptin signaling and brown/beige adipocyte formation of osteogenic progenitor cells to preserve bone anabolism, which reversed HFD-induced energy underutilization and visceral fat overproduction. This study sheds light on a new molecular mechanism by which bone integrity counteracts HFD-induced whole-body fat overproduction.


Subject(s)
Intra-Abdominal Fat/metabolism , Leptin/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Osteoporosis/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Diet, High-Fat/adverse effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Leptin/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Osteoblasts/cytology , Osteoporosis/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisomes/metabolism , Receptors, Purinergic P2X5/genetics , Receptors, Purinergic P2X5/metabolism , Symporters/genetics , Symporters/metabolism , Thermogenesis , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism
18.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455716

ABSTRACT

Recent studies have found that microRNA-29a (miR-29a) levels are significantly lower in fibrotic livers, as shown with human liver cirrhosis. Such downregulation influences the activation of hepatic stellate cells (HSC). Phosphoinositide 3-kinase p85 alpha (PI3KP85α) is implicated in the regulation of proteostasis mitochondrial integrity and unfolded protein response (UPR) and apoptosis in hepatocytes. This study aimed to investigate the potential therapeutic role of miR-29a in a murine bile duct ligation (BDL)-cholestatic injury and liver fibrosis model. Mice were assigned to four groups: sham, BDL, BDL + scramble miRs, and BDL + miR-29a-mimic. Liver fibrosis and inflammation were assessed by histological staining and mRNA/protein expression of representative markers. Exogenous therapeutics of miR-29a in BDL-stressed mice significantly attenuated glutamic oxaloacetic transaminase (GOT)/glutamic-pyruvic transaminase (GPT) and liver fibrosis, and caused a significant downregulation in markers related to inflammation (IL-1ß), fibrogenesis (TGF-ß1, α-SMA, and COL1α1), autophagy (p62 and LC3B II), mitochondrial unfolded protein response (UPRmt; C/EBP homologous protein (CHOP), heat shock protein 60 (HSP60), and Lon protease-1 (LONP1, a mitochondrial protease), and PI3KP85α within the liver tissue. An in vitro luciferase reporter assay further confirmed that miR-29a mimic directly targets mRNA 3' untranslated region (UTR) of PI3KP85α to suppress its expression in HepG2 cell line. Our data provide new insights that therapeutic miR-29a improves cholestasis-induced hepatic inflammation and fibrosis and proteotstasis via blocking PI3KP85α, highlighting the potential of miR-29a targeted therapy for liver injury.


Subject(s)
Cholestasis/therapy , Class Ia Phosphatidylinositol 3-Kinase/genetics , Liver Cirrhosis/therapy , MicroRNAs/metabolism , RNAi Therapeutics/methods , ATP-Dependent Proteases/genetics , ATP-Dependent Proteases/metabolism , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , Chaperonin 60/genetics , Chaperonin 60/metabolism , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Hep G2 Cells , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
19.
Int J Mol Sci ; 21(18)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961796

ABSTRACT

MicroRNA-29a (miR-29a) has been shown to ameliorate hepatocellular damage, such as in the context of non-alcoholic fatty liver disease (NAFLD), steatohepatitis (NASH), and cholestatic injury. However, the mechanism mediating the hepatoprotective effect of miR-29a in diet-induced NASH remains elusive. In the present study, C57BL/6 mice of wild-type (WT) or miR-29a overexpression were fed with methionine-choline sufficient (MCS) or methionine-choline-deficient (MCD) diet for four weeks. The C57BL/6 mice harboring miR-29a overexpression presented reduced plasma AST, hepatic CD36, steatosis, and fibrosis induced by MCD. The TargetScan Release7.2-based bioinformatic analysis, KEGG pathway analysis, and luciferase reporter assay confirmed that miR-29a targets 3'UTR of glycogen synthase kinase 3 beta (Gsk3b) mRNA in the HepG2 hepatocyte cell line. Furthermore, miR-29a overexpression in the MCD-fed group resulted in inhibition of Gsk3b mRNA and GSK3ß protein levels in the liver. GSK3ß was notably expressed jointly with the extent of aggregated protein, which was then identified to be associated with mitochondrial unfolded protein response (UPRmt), but not with endoplasmic reticulum UPR (UPRER). Additionally, in silico analysis of protein-protein interaction, in vivo, and in vitro correlation analyses of protein expression demonstrated that GSK3ß closely associated with sirtuin 1(SIRT1). Finally, the implication of SIRT1-mediated mitochondrial biogenesis in the perturbation of proteostasis was observed. We herein provide novel insight into a hepatoprotective pathway, whereby miR-29a inhibits GSK3ß to repress SIRT1-mediated mitochondrial biogenesis, leading to alleviation of mitochondrial proteostatic stress and UPRmt in the context of NASH. miR-29a, GSK3ß, and SIRT1 could thus serve as possible therapeutic targets to improve the treatment of NAFLD/NASH.


Subject(s)
Glycogen Synthase Kinase 3 beta/metabolism , MicroRNAs/biosynthesis , Mitochondria, Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Proteostasis , Sirtuin 1/metabolism , Animals , Glycogen Synthase Kinase 3 beta/genetics , Mice , Mice, Transgenic , MicroRNAs/genetics , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Sirtuin 1/genetics , Unfolded Protein Response
20.
Int J Mol Sci ; 21(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066038

ABSTRACT

Noise-induced hearing loss is one of the major causes of acquired sensorineural hearing loss in modern society. While people with excessive exposure to noise are frequently the population with a lifestyle of irregular circadian rhythms, the effects of circadian dysregulation on the auditory system are still little known. Here, we disturbed the circadian clock in the cochlea of male CBA/CaJ mice by constant light (LL) or constant dark. LL significantly repressed circadian rhythmicity of circadian clock genes Per1, Per2, Rev-erbα, Bmal1, and Clock in the cochlea, whereas the auditory brainstem response thresholds were unaffected. After exposure to low-intensity (92 dB) noise, mice under LL condition initially showed similar temporary threshold shifts to mice under normal light-dark cycle, and mice under both conditions returned to normal thresholds after 3 weeks. However, LL augmented high-intensity (106 dB) noise-induced permanent threshold shifts, particularly at 32 kHz. The loss of outer hair cells (OHCs) and the reduction of synaptic ribbons were also higher in mice under LL after noise exposure. Additionally, LL enhanced high-intensity noise-induced 4-hydroxynonenal in the OHCs. Our findings convey new insight into the deleterious effect of an irregular biological clock on the auditory system.


Subject(s)
Auditory Threshold/radiation effects , Circadian Clocks/radiation effects , Cochlea/radiation effects , Hearing Loss, Noise-Induced/physiopathology , Light , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Cochlea/metabolism , Cochlea/physiopathology , Evoked Potentials, Auditory, Brain Stem , Hearing Loss, Noise-Induced/metabolism , Male , Mice , Mice, Inbred CBA , Nuclear Receptor Subfamily 1, Group D, Member 1/genetics , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL