Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 474
Filter
Add more filters

Publication year range
1.
Nature ; 619(7971): 738-742, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438533

ABSTRACT

Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies1,2. On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition3,4. On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing5-8. However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 ± 0.030 and 0.671 ± 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.

2.
Nature ; 606(7914): 594-602, 2022 06.
Article in English | MEDLINE | ID: mdl-35614224

ABSTRACT

Only a small proportion of patients with cancer show lasting responses to immune checkpoint blockade (ICB)-based monotherapies. The RNA-editing enzyme ADAR1 is an emerging determinant of resistance to ICB therapy and prevents ICB responsiveness by repressing immunogenic double-stranded RNAs (dsRNAs), such as those arising from the dysregulated expression of endogenous retroviral elements (EREs)1-4. These dsRNAs trigger an interferon-dependent antitumour response by activating A-form dsRNA (A-RNA)-sensing proteins such as MDA-5 and PKR5. Here we show that ADAR1 also prevents the accrual of endogenous Z-form dsRNA elements (Z-RNAs), which were enriched in the 3' untranslated regions of interferon-stimulated mRNAs. Depletion or mutation of ADAR1 resulted in Z-RNA accumulation and activation of the Z-RNA sensor ZBP1, which culminated in RIPK3-mediated necroptosis. As no clinically viable ADAR1 inhibitors currently exist, we searched for a compound that can override the requirement for ADAR1 inhibition and directly activate ZBP1. We identified a small molecule, the curaxin CBL0137, which potently activates ZBP1 by triggering Z-DNA formation in cells. CBL0137 induced ZBP1-dependent necroptosis in cancer-associated fibroblasts and reversed ICB unresponsiveness in mouse models of melanoma. Collectively, these results demonstrate that ADAR1 represses endogenous Z-RNAs and identifies ZBP1-mediated necroptosis as a new determinant of tumour immunogenicity masked by ADAR1. Therapeutic activation of ZBP1-induced necroptosis provides a readily translatable avenue for rekindling the immune responsiveness of ICB-resistant human cancers.


Subject(s)
Adenosine Deaminase , Necroptosis , Neoplasms , RNA-Binding Proteins , 3' Untranslated Regions , Adenosine Deaminase/metabolism , Animals , Cancer-Associated Fibroblasts , Carbazoles/pharmacology , Humans , Immunotherapy/trends , Interferons/metabolism , Melanoma , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , RNA, Double-Stranded/immunology , RNA-Binding Proteins/metabolism
3.
Plant J ; 117(2): 464-482, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37872890

ABSTRACT

Rhodiola L. is a genus that has undergone rapid radiation in the mid-Miocene and may represent a typic case of adaptive radiation. Many species of Rhodiola have also been widely used as an important adaptogen in traditional medicines for centuries. However, a lack of high-quality chromosome-level genomes hinders in-depth study of its evolution and biosynthetic pathway of secondary metabolites. Here, we assembled two chromosome-level genomes for two Rhodiola species with different chromosome number and sexual system. The assembled genome size of R. chrysanthemifolia (2n = 14; hermaphrodite) and R. kirilowii (2n = 22; dioecious) were of 402.67 and 653.62 Mb, respectively, with approximately 57.60% and 69.22% of transposable elements (TEs). The size difference between the two genomes was mostly due to proliferation of long terminal repeat-retrotransposons (LTR-RTs) in the R. kirilowii genome. Comparative genomic analysis revealed possible gene families responsible for high-altitude adaptation of Rhodiola, including a homolog of plant cysteine oxidase 2 gene of Arabidopsis thaliana (AtPCO2), which is part of the core molecular reaction to hypoxia and contributes to the stability of Group VII ethylene response factors (ERF-VII). We found extensive chromosome fusion/fission events and structural variations between the two genomes, which might have facilitated the initial rapid radiation of Rhodiola. We also identified candidate genes in the biosynthetic pathway of salidroside. Overall, our results provide important insights into genome evolution in plant rapid radiations, and possible roles of chromosome fusion/fission and structure variation played in rapid speciation.


Subject(s)
Glucosides , Phenols , Rhodiola , Rhodiola/genetics , Rhodiola/metabolism , Biosynthetic Pathways , Genome Size , Chromosomes , Evolution, Molecular
4.
Nat Mater ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589541

ABSTRACT

Robust ferroelectricity in nanoscale fluorite oxide-based thin films enables promising applications in silicon-compatible non-volatile memories and logic devices. However, the polar orthorhombic (O) phase of fluorite oxides is a metastable phase that is prone to transforming into the ground-state non-polar monoclinic (M) phase, leading to macroscopic ferroelectric degradation. Here we investigate the reversibility of the O-M phase transition in ZrO2 nanocrystals via in situ visualization of the martensitic transformation at the atomic scale. We reveal that the reversible shear deformation pathway from the O phase to the monoclinic-like (M') state, a compressive-strained M phase, is protected by 90° ferroelectric-ferroelastic switching. Nevertheless, as the M' state gradually accumulates localized strain, a critical tensile strain can pin the ferroelastic domain, resulting in an irreversible M'-M strain relaxation and the loss of ferroelectricity. These findings demonstrate the key role of ferroelastic switching in the reversibility of phase transition and also provide a tensile-strain threshold for stabilizing the metastable ferroelectric phase in fluorite oxide thin films.

5.
Nucleic Acids Res ; 51(8): 3855-3868, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36938872

ABSTRACT

Meiotic recombinases RAD51 and DMC1 mediate strand exchange in the repair of DNA double-strand breaks (DSBs) by homologous recombination. This is a landmark event of meiosis that ensures genetic diversity in sexually reproducing organisms. However, the regulatory mechanism of DMC1/RAD51-ssDNA nucleoprotein filaments during homologous recombination in mammals has remained largely elusive. Here, we show that SPIDR (scaffold protein involved in DNA repair) regulates the assembly or stability of RAD51/DMC1 on ssDNA. Knockout of Spidr in male mice causes complete meiotic arrest, accompanied by defects in synapsis and crossover formation, which leads to male infertility. In females, loss of Spidr leads to subfertility; some Spidr-/- oocytes are able to complete meiosis. Notably, fertility is rescued partially by ablation of the DNA damage checkpoint kinase CHK2 in Spidr-/- females but not in males. Thus, our study identifies SPIDR as an essential meiotic recombination factor in homologous recombination in mammals.


Subject(s)
Cell Cycle Proteins , Rad51 Recombinase , Animals , Male , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Pairing/genetics , DNA Repair , Homologous Recombination/genetics , Mammals/metabolism , Meiosis/genetics , Mice, Knockout , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
6.
Nano Lett ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842462

ABSTRACT

The aggravated mechanical and structural degradation of layered oxide cathode materials upon high-voltage charging invariably causes fast capacity fading, but the underlying degradation mechanisms remain elusive. Here we report a new type of mechanical degradation through the formation of a kink band in a Mg and Ti co-doped LiCoO2 cathode charged to 4.55 V (vs Li/Li+). The local stress accommodated by the kink band can impede crack propagation, improving the structural integrity in a highly delithiated state. Additionally, machine-learning-aided atomic-resolution imaging reveals that the formation of kink bands is often accompanied by the transformation from the O3 to O1 phase, which is energetically favorable as demonstrated by first-principles calculations. Our results provide new insights into the mechanical degradation mechanism of high-voltage LiCoO2 and the coupling between electrochemically triggered mechanical failures and structural transition, which may provide valuable guidance for enhancing the electrochemical performance of high-voltage layered oxide cathode materials for lithium-ion batteries.

7.
J Cell Mol Med ; 28(14): e18545, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031471

ABSTRACT

Hypoxia plays an important role in the pathological process of bladder outlet obstruction. Previous research has mostly focused on the dysfunction of bladder smooth muscle cells, which are directly related to bladder contraction. This study delves into the barrier function changes of the urothelial cells under exposure to hypoxia. Results indicated that after a 5-day culture, SV-HUC-1 formed a monolayer and/or bilayer of cell sheets, with tight junction formation, but no asymmetrical unit membrane was observed. qPCR and western blotting revealed the expression of TJ-associated proteins (occludin, claudin1 and ZO-1) was significantly decreased in the hypoxia group in a time-dependent manner. No expression changes were observed in uroplakins. When compared to normoxic groups, immunofluorescent staining revealed a reduction in the expression of TJ-associated proteins in the hypoxia group. Transepithelial electrical resistance (TEER) revealed a statistically significant decrease in resistance in the hypoxia group. Fluorescein isothiocyanate-conjugated dextran assay was inversely proportional to the results of TEER. Taken together, hypoxia down-regulates the expression of TJ-associated proteins and breaks tight junctions, thus impairing the barrier function in human urothelial cells.


Subject(s)
Cell Hypoxia , Tight Junction Proteins , Tight Junctions , Urothelium , Humans , Urothelium/metabolism , Urothelium/pathology , Tight Junctions/metabolism , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Cell Line , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Occludin/metabolism , Occludin/genetics , Claudin-1/metabolism , Claudin-1/genetics , Electric Impedance , Gene Expression Regulation
8.
BMC Genomics ; 25(1): 370, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627628

ABSTRACT

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS: This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS: Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.


Subject(s)
Chenopodium quinoa , Chenopodium quinoa/genetics , Chenopodium quinoa/metabolism , Phylogeny , Temperature , Polyamines/metabolism , Ethylenes/metabolism
9.
Small ; 20(11): e2306229, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37922531

ABSTRACT

Photocatalytic ammonia synthesis technology is one of the important methods to achieve green ammonia synthesis. Herein, two samples of Cu ion-doped W18 O49 with different morphologies, ultra-thin nanowires (Cu-W18 O49 -x UTNW) and sea urchin-like microspheres (Cu-W18 O49 -x SUMS), are synthesized by a simple solvothermal method. Subsequently, Cu2 O-W18 O49 -x UTNW/SUMS is synthesized by in situ reduction, where the NH3 production rate of Cu2 O-W18 O49 -30 UTNW is 252.4 µmol g-1  h-1 without sacrificial reagents, which is 11.8 times higher than that of the pristine W18 O49 UTNW. The Cu2 O-W18 O49 -30 UTNW sample is rich in oxygen vacancies, which promotes the chemisorption and activation of N2 molecules and makes the N≡N bond easier to dissociate by proton coupling. In addition, the in situ reduction-generated Cu2 O nanoparticles exhibit ideal S-scheme heterojunctions with W18 O49 UTNW, which enhances the internal electric field strength and improves the separation and transfer efficiency of the photogenerated carriers. Therefore, this study provides a new idea for the design of efficient nitrogen fixation photocatalysis.

10.
Small ; 20(30): e2307482, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38412428

ABSTRACT

Manganese-based oxides (MnOx) suffer from sluggish charge diffusion kinetics and poor cycling stability in sodium ion storage. Herein, an interfacial electric field (IEF) in CeO2/MnOx is constructed to obtain high electronic/ionic conductivity and structural stability of MnOx. The as-designed CeO2/MnOx exhibits a remarkable capacity of 397 F g-1 and favorable cyclic stability with 92.13% capacity retention after 10,000 cycles. Soft X-ray absorption spectroscopy and partial density of states results reveal that the electrons are substantially injected into the Mn t2g orbitals driven by the formed IEF. Correspondingly, the MnO6 units in MnOx are effectively activated, endowing the CeO2/MnOx with fast charge transfer kinetics and high sodium ion storage capacity. Moreover, In situRaman verifies a remarkably increased structural stability of CeO2/MnOx, which is attributed to the enhanced Mn─O bond strength and efficiently stabilized MnO6 units. Mechanism studies show that the downshift of Mn 3d-band center dramatically increases the Mn 3d-O 2p orbitals overlap, thus inhibiting the Jahn-Teller (J-T) distortion of MnOx during sodium ion insertion/extraction. This work develops an advanced strategy to achieve both fast and sustainable sodium ion storage in metal oxides-based energy materials.

11.
J Pharmacol Exp Ther ; 388(1): 190-200, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37863485

ABSTRACT

This study aimed to evaluate the effects of cytochrome P450 3A4 (CYP3A4) gene polymorphism and drug interaction on the metabolism of blonanserin. Human recombinant CYP3A4 was prepared using the Bac-to-Bac baculovirus expression system. A microsomal enzyme reaction system was established, and drug-drug interactions were evaluated using Sprague-Dawley rats. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the concentrations of blonanserin and its metabolite. Compared with wild type CYP34A, the relative clearance of blonanserin by CYP3A4.29 significantly increased to 251.3%, while it decreased notably with CYP3A4.4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 23, 24, 28, 31, 33, and 34, ranging from 6.09% to 63.34%. Among 153 tested drugs, nimodipine, felodipine, and amlodipine were found to potently inhibit the metabolism of blonanserin. Moreover, the inhibitory potency of nimodipine, felodipine, and amlodipine varied with different CYP3A4 variants. The half-maximal inhibitory concentration and enzymatic kinetics assay demonstrated that the metabolism of blonanserin was noncompetitively inhibited by nimodipine in rat liver microsomes and was inhibited in a mixed manner by felodipine and amlodipine in both rat liver microsomes and human liver microsomes. When nimodipine and felodipine were coadministered with blonanserin, the area under the blood concentration-time curve (AUC)(0-t), AUC(0-∞), and C max of blonanserin increased. When amlodipine and blonanserin were combined, the C max of blonanserin C increased remarkably. The vast majority of CYP3A4 variants have a low ability to catalyze blonanserin. With combined administration of nimodipine, felodipine, and amlodipine, the elimination of blonanserin was inhibited. This study provides the basis for individualized clinical use of blonanserin. SIGNIFICANCE STATEMENT: The enzyme kinetics of novel CYP3A4 enzymes for metabolizing blonanserin were investigated. Clearance of blonanserin by CYP3A4.4, 5, 7-10, 12-14, 16-18, 23-24, 28, 31, 33, and 34 decreased notably, but increased with CYP3A4.29. Additionally, we established a drug interaction spectrum for blonanserin, in which nimodipine, felodipine, and amlodipine kinetics exhibited mixed inhibition. Moreover, their inhibitory potencies decreased with CYP3A4.4 and 5 compared to CYP3A4.1. This study provides essential data for personalized clinical use of blonanserin.


Subject(s)
Cytochrome P-450 CYP3A , Nimodipine , Humans , Rats , Animals , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Nimodipine/metabolism , Nimodipine/pharmacology , Felodipine/metabolism , Felodipine/pharmacology , Rats, Sprague-Dawley , Drug Interactions , Amlodipine/metabolism , Amlodipine/pharmacology , Microsomes, Liver/metabolism , Metabolome
12.
J Transl Med ; 22(1): 240, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443933

ABSTRACT

BACKGROUND: Mitochondria produce adenosine triphosphate through respiratory activities to power sperm differentiation and motility, and decreased mitochondrial respiratory activity can result in poor sperm motility and asthenospermia. The mitochondrial sheath is a component of the mid-piece of the sperm flagellum, and dysfunction of the sheath can reduce sperm motility and cause male infertility. The membrane occupation and recognition nexus-motif protein 2 (MORN2) is testis enriched in mice, and the MORN motif was reported to play a role in the regulation of bioelectrical signal homeostasis in cardiomyocytes. METHODS: We generated Morn2-/- mice using CRISPR/Cas9 and evaluated the potential functions of MORN2 in spermiogenesis through histological analysis, fertility examination, RT-PCR, CASA, immunofluorescence, TUNEL, electron microscopy analysis, mitochondrial energy metabolism analysis, etc. RESULTS: The Morn2-/- mice were infertile, and their sperm showed severe motility defects. Morn2-/- sperm also had abnormal morphology characterized by bent heads, aberrant mitochondrial sheath formation, lower mitochondrial membrane potential, higher levels of reactive oxygen species, and decreased mitochondrial respiratory activity. CONCLUSIONS: Our study demonstrates that MORN2 is essential for male fertility and indicates that MORN2 functions in mitochondrial sheath formation and regulates mitochondrial respiratory activity.


Subject(s)
Semen , Sperm Motility , Animals , Male , Mice , Energy Metabolism , Fertility , Mitochondria
13.
PLoS Pathog ; 18(5): e1010488, 2022 05.
Article in English | MEDLINE | ID: mdl-35503780

ABSTRACT

Transmitted/founder (T/F) HIV-1 envelope proteins (Envs) from infected individuals that developed neutralization breadth are likely to possess inherent features desirable for vaccine immunogen design. To explore this premise, we conducted an immunization study in rhesus macaques (RM) using T/F Env sequences from two human subjects, one of whom developed potent and broad neutralizing antibodies (Z1800M) while the other developed little to no neutralizing antibody responses (R66M) during HIV-1 infection. Using a DNA/MVA/protein immunization protocol, 10 RM were immunized with each T/F Env. Within each T/F Env group, the protein boosts were administered as either monomeric gp120 or stabilized trimeric gp140 protein. All vaccination regimens elicited high titers of antigen-specific IgG, and two animals that received monomeric Z1800M Env gp120 developed autologous neutralizing activity. Using early Env escape variants isolated from subject Z1800M as guides, the serum neutralizing activity of the two immunized RM was found to be dependent on the gp120 V5 region. Interestingly, the exact same residues of V5 were also targeted by a neutralizing monoclonal antibody (nmAb) isolated from the subject Z1800M early in infection. Glycan profiling and computational modeling of the Z1800M Env gp120 immunogen provided further evidence that the V5 loop is exposed in this T/F Env and was a dominant feature that drove neutralizing antibody targeting during infection and immunization. An expanded B cell clonotype was isolated from one of the neutralization-positive RM and nmAbs corresponding to this group demonstrated V5-dependent neutralization similar to both the RM serum and the human Z1800M nmAb. The results demonstrate that neutralizing antibody responses elicited by the Z1800M T/F Env in RM converged with those in the HIV-1 infected human subject, illustrating the potential of using immunogens based on this or other T/F Envs with well-defined immunogenicity as a starting point to drive breadth.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Animals , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp120 , HIV Infections/prevention & control , Humans , Macaca mulatta , env Gene Products, Human Immunodeficiency Virus
14.
New Phytol ; 242(3): 1275-1288, 2024 May.
Article in English | MEDLINE | ID: mdl-38426620

ABSTRACT

Rhizosphere microbiomes are pivotal for crop fitness, but the principles underlying microbial assembly during root-soil interactions across soils with different nutrient statuses remain elusive. We examined the microbiomes in the rhizosphere and bulk soils of maize plants grown under six long-term (≥ 29 yr) fertilization experiments in three soil types across middle temperate to subtropical zones. The assembly of rhizosphere microbial communities was primarily driven by deterministic processes. Plant selection interacted with soil types and fertilization regimes to shape the structure and function of rhizosphere microbiomes. Predictive functional profiling showed that, to adapt to nutrient-deficient conditions, maize recruited more rhizobacteria involved in nutrient availability from bulk soil, although these functions were performed by different species. Metagenomic analyses confirmed that the number of significantly enriched Kyoto Encyclopedia of Genes and Genomes Orthology functional categories in the rhizosphere microbial community was significantly higher without fertilization than with fertilization. Notably, some key genes involved in carbon, nitrogen, and phosphorus cycling and purine metabolism were dominantly enriched in the rhizosphere soil without fertilizer input. In conclusion, our results show that maize selects microbes at the root-soil interface based on microbial functional traits beneficial to its own performance, rather than selecting particular species.


Subject(s)
Alphaproteobacteria , Microbiota , Zea mays/microbiology , Soil Microbiology , Soil/chemistry , Rhizosphere , Fertilization
15.
Chemistry ; 30(32): e202401014, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38570881

ABSTRACT

Highly regioselective C-H alkylation reactions of tertiary anilines and tertiary alkyl amines with simple alkenes have been achieved by the use of imidazolin-2-iminato scandium alkyl complexes. This protocol provided an efficient and atom-economical route to structurally diverse tertiary amine derivatives. The basic ligand, a coordinating THF in the catalyst and the substitution of alkene substrates were found to switch the regioselectivity of the C-H alkylation reactions of tertiary anilines presumably due to the generation of different types of catalytically active species or the formation of relatively stable intermediates. On the basis of the deuterium labeling experiments and KIE experiments, possible catalytical cycles were provided to understand the reaction mechanism as well as the regioselectivity.

16.
Environ Sci Technol ; 58(4): 2102-2111, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38238255

ABSTRACT

Waste biomass is one of the promising feedstocks to supply syngas that can be used as fuels, chemicals, reductants, etc. However, the relationship between the component of biomass and the constituent of pyrolysis gas remains unclear. Here, we study the pyrolysis behaviors of various biomasses and reveal the relationship between the biomass components and gas compositions. Further, different pyrolysis gases are applied for the reduction of spent lithium cobalt oxide (LiCoO2) below 500 °C. The pyrolysis gas with a higher concentration of CO has a higher reductivity to convert LiCoO2 to CoO and Li2CO3 with a conversion rate close to 100% in 1 h at 500 °C. The biomass rich in cellulose and with a lower content of lignin tends to produce pyrolysis gas with a high concentration of CO, which comes from the deliberate breakdown of carboxyl, carbonyl, ether, and ester linkages. Moreover, LiCoO2 exerts catalytic functions over the deoxygenation and enhancement of oxygenates and single-ring aromatics. Overall, this paper offers a tailored approach to regulating biomass pyrolysis gases, enabling highly efficient battery recycling and syngas production.


Subject(s)
Electric Power Supplies , Pyrolysis , Biomass , Lignin/chemistry , Recycling , Gases
17.
Environ Res ; 252(Pt 2): 118653, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38518907

ABSTRACT

BACKGROUND: In China, the effects of heavy metals and metalloids (HMMs) on liver health are not consistently documented, despite their prevalent environmental presence. OBJECTIVE: Our research assessed the association between HMMs and liver function biomarkers in a comprehensive sample of Chinese adults. METHODS: We analyzed data from 9445 participants in the China National Human Biomonitoring survey. Blood and urine were evaluated for HMM concentrations, and liver health was gauged using serum albumin (ALB), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) metrics. Various statistical methods were employed to understand the relationship between 11 HMMs and liver function, adjusting for multiple factors. We also explored interactions with alcohol intake, gender, and age. RESULTS: Among HMMs, selenium in blood [weighted geometric mean (GM) = 95.56 µg/L] and molybdenum in urine (GM = 46.44 µg/L) showed the highest concentrations, while lead in blood (GM = 21.92 µg/L) and arsenic in urine (GM = 19.80 µg/L) had the highest levels among risk HMMs. Manganese and thallium consistently indicated potential risk factor to liver in both sample types, while selenium displayed potential liver protection. Blood HMM mixtures were negatively associated with ALB (ß = -0.614, 95% CI: -0.809, -0.418) and positively with AST (ß = 0.701, 95% CI: 0.290, 1.111). No significant associations were found in urine HMM mixtures. Manganese, tin, nickel, and selenium were notable in blood mixture associations, with selenium and cobalt being significant in urine. The relationship of certain HMMs varied based on alcohol consumption. CONCLUSION: This research highlights the complex relationship between HMM exposure and liver health in Chinese adults, particularly emphasizing metals like manganese, thallium, and selenium. The results suggest a need for public health attention to low dose HMM exposure and underscore the potential benefits of selenium for liver health. Further studies are essential to establish causality.


Subject(s)
Environmental Exposure , Environmental Pollutants , Liver , Metalloids , Metals, Heavy , Humans , China , Male , Female , Adult , Cross-Sectional Studies , Middle Aged , Metals, Heavy/urine , Metals, Heavy/blood , Metalloids/urine , Metalloids/blood , Metalloids/analysis , Liver/drug effects , Environmental Exposure/analysis , Environmental Pollutants/urine , Environmental Pollutants/blood , Young Adult , Aged , Liver Function Tests , East Asian People
18.
Mol Ther ; 31(6): 1705-1721, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-35974702

ABSTRACT

Circular RNAs (circRNAs) are a novel class of endogenous RNAs with a covalently closed loop structure. Many circRNAs have been found to participate in cancer progression. However, the detailed generation process, functions, and related mechanisms of circRNAs in prostate cancer (PCa) remain largely unknown. In the present study, we identified circEXOC6B, a novel suppressor in the metastasis of PCa. Functionally, circEXOC6B, originating from the exocyst complex component 6B (EXOC6B) gene, inhibited migration and invasion of PCa in vitro and in vivo. Mechanistically, by acting as a protein scaffold, circEXOC6B enhanced the binding of human RNA binding motif single strand interacting protein 1 (RBMS1) and human antigen R (HuR) and further increased A-kinase anchoring protein 12 (AKAP12) expression to inhibit PCa metastasis. Unlike previous studies, we found that one pair of short inverted repeats in flanking introns at least partly promoted the circularization of circEXOC6B. Our study presents a novel mechanism for the inhibitory role of circEXOC6B in PCa metastasis and provides new insight into the molecular process of circRNA generation.


Subject(s)
Genital Neoplasms, Female , MicroRNAs , Prostatic Neoplasms , Male , Female , Humans , RNA, Circular/genetics , RNA/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Cell Proliferation , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
19.
Article in English | MEDLINE | ID: mdl-38626734

ABSTRACT

OBJECTIVE: This study aimed to characterize the computed tomography (CT) enterography features of the small bowel gastrointestinal stromal tumors (GIST) and to determine the association with pathological aggressiveness. METHODS: Computed tomography enterography images of 30 patients with the histologically confirmed small bowel GIST were retrospectively enrolled. Tumor size, location, border, growth pattern, enhancement pattern, necrosis, calcification, ulceration, internal air, nodal metastasis, liver metastasis, peritoneal metastasis, and draining vein were evaluated. Relationships between imaging features and pathological aggressiveness were analyzed using χ2 test or Fisher exact test. Correlations among CT features were analyzed using Spearman correlation analysis. RESULTS: There were significant differences in tumor size between different risk levels (F = 8.388, P < 0.001). There were statistically significant differences in the 5 imaging manifestations of necrosis, ulcer, tumor boundary, drainage vein, and intratumoral gas (P < 0.05). There was a significant negative correlation between tumor size and enhancement type as well as clear tumor boundary. There was a significant positive correlation between tumor size and necrosis, ulcer, drainage vein, intratumoral gas, liver metastasis, and peritoneal metastasis. CONCLUSIONS: Some CT enterography imaging features might be useful in the determination of the pathological aggressiveness in the patients with small bowel GIST.

20.
BMC Med Imaging ; 24(1): 42, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350842

ABSTRACT

BACKGROUND: Parathyroid glands are important endocrine glands, and the identification of normal parathyroid glands is crucial for their protection. The aim of this study is to explore the sonographic characteristics of normal parathyroid glands and analyze the factors affecting their display. METHODS: Seven hundred three subjects who underwent physical examination at our hospital were included. The number, location, size, morphology, echogenicity and blood flow distribution of parathyroid glands were recorded. The ultrasound characteristics and display rate were also summarized. Meanwhile, shear wave elastography was performed in 50 cases to provide the stiffness measurements, and 26 cases received contrast-enhanced ultrasonography for the assessment of microcirculatory perfusion. Furthermore, we analyzed the factors affecting parathyroid display, including basic information of the subjects and ultrasound features of the thyroid. RESULTS: ① A total of 1038 parathyroid glands were detected, among which, 79.29% were hyperechoic, 20.71% were isoechoic, 88.15% were oval-shaped, and 86.71% had blood flow of grade 0-I. ② 81.79% of the subjects had at least one parathyroid gland detected. ③ The Emean, Emax, PI and AUC of the parathyroid glands were significantly lower than those of the adjacent thyroid tissue (P < 0.05). ④ The display of normal parathyroid glands was related to BMI, thyroid echogenicity and thyroid volume of the subjects (P < 0.05). CONCLUSIONS: Normal parathyroid glands tend to appear as oval-shaped hyperechoic nodules with blood flow of grade 0-I. BMI, thyroid echogenicity and thyroid volume are independent factors affecting the display of parathyroid glands.


Subject(s)
Elasticity Imaging Techniques , Parathyroid Glands , Humans , Parathyroid Glands/diagnostic imaging , Microcirculation , Ultrasonography , Thyroid Gland/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL