Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chem ; 96(33): 13663-13671, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39126679

ABSTRACT

Rapid and accurate detection of human epidermal growth factor receptor 2 (HER2) is crucial for the early diagnosis and prognosis of breast cancer. In this study, we reported an iron-manganese ion N-doped carbon single-atom catalyst (FeMn-NCetch/SAC) bimetallic peroxidase mimetic enzyme with abundant active sites etched by H2O2 and further demonstrated unique advantages of single-atom bimetallic nanozymes in generating hydroxyl radicals by density functional theory (DFT) calculations. As a proof of concept, a portable device-dependent electrochemical-photothermal bifunctional immunoassay detection platform was designed to achieve reliable detection of HER2. In the enzyme-linked reaction, H2O2 was generated by substrate catalysis via secondary antibody-labeled glucose oxidase (GOx), while FeMn-NCetch/SAC nanozymes catalyzed the decomposition of H2O2 to form OH*, which catalyzed the conversion of 3,3',5,5'-tetramethylbenzidine (TMB) to ox-TMB. The ox-TMB generation was converted from the colorimetric signals to electrical and photothermal signals by applied potential and laser irradiation, which could be employed for the quantitative detection of HER2. With the help of this bifunctional detection technology, HER2 was accurately detected in two ways: photothermally, with a linear scope of 0.01 to 2.0 ng mL-1 and a limit of detection (LOD) of 7.5 pg mL-1, and electrochemically, with a linear scope of 0.01 to 10 ng mL-1 at an LOD of 3.9 pg mL-1. By successfully avoiding environmental impacts, the bifunctional-based immunosensing strategy offers strong support for accurate clinical detection.


Subject(s)
Electrochemical Techniques , Receptor, ErbB-2 , Smartphone , Humans , Immunoassay/methods , Receptor, ErbB-2/analysis , Receptor, ErbB-2/immunology , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Catalysis , Limit of Detection , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Benzidines/chemistry , Manganese/chemistry , Iron/chemistry , Breast Neoplasms , Density Functional Theory
2.
Anal Chem ; 95(38): 14494-14501, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37707360

ABSTRACT

Noble-metal nanozymes have demonstrated great potential in various fields. However, aggregation of single-particle nanoparticles severely affects their exposed catalytically active sites to the extent of exhibiting weak enzyme-like activity. Here, we present an organic block surfactant (polyvinylpyrrolidone, PVP) to construct monodisperse water-stable Pt nanoclusters (Pt NCs) for an enhanced immunoassay of cardiac troponin I (cTnI). The PVP-modified Pt NC nanozyme exhibited up to 16.3 U mg-1 peroxidase-mimicking activity, which was mainly attributed to the ligand modification on the surface and the electron-absorbing effect of the ligand on the Pt NCs. The PVP-modified Pt NCs have a lower OH-transition potential, as determined by density functional theory. Under optimized experimental conditions, the enhanced nanozyme immunoassay strategy exhibited an ultrawide dynamic response range of 0.005-50 ng mL-1 for cTnI targets with a detection limit of 1.3 pg mL-1, far superior to some reported test protocols. This work provides a designable pathway for the design of artificial enzymes with high enzyme-like activity to further expand the practical range of enzyme alternatives.


Subject(s)
Polymers , Troponin I , Ligands , Povidone , Immunoassay
3.
Anal Chim Acta ; 1284: 342006, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37996161

ABSTRACT

Development of high-precision human epidermal growth factor receptor 2 (HER2) assay is essential for the early diagnostic and prevention of breast cancer. In this work, an innovative Fe/Mn bimetallic nanozyme at the edge of N-doped carbon defects (FeMn-NCedge) with abundant active sites was prepared through the hydrothermal synthetic method. FeMn-NCedge nanozyme displayed excellent peroxidase-like activity relative to the H2O2-catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) system for generation of the oxidized TMB (oxTMB). As a proof-of-concept application, we constructed an electrochemical immunoassay for the detection of HER2 based on the unique merits of FeMn-NCedge. Initially, a sandwiched immunoreaction was carried out in the microtiter plate coated with monoclonal anti-HER2 capture antibodies using glucose oxidase (GOx)-labeled anti-HER2 as detection antibody. The carried GOx could catalyze glucose to produce H2O2, thus resulting in the formation of oxTMB with the assistance of TMB and FeMn-NCedge nanozyme. The produced oxTMB could be determined on the electrode by the chronoamperometry at an applied potential of +10 mV. Experimental results revealed that the steady-state current increased with the increasing HER2 concentration in the sample, and gave a good linear relationship within the dynamic range of 0.01-10 ng/mL at a limit of detection of 5.4 pg/mL HER2. In addition, good reproducibility, high specificity and acceptable accuracy were acquired for the measurement of human serum samples. Importantly, this method can be extended for quantitative monitoring other disease-related proteins by changing the corresponding antibodies.


Subject(s)
Carbon , Hydrogen Peroxide , Humans , Carbon/chemistry , Hydrogen Peroxide/chemistry , Reproducibility of Results , Catalytic Domain , Immunoassay/methods , Glucose Oxidase/chemistry , Gold/chemistry , Colorimetry/methods , Limit of Detection
4.
PLoS One ; 18(3): e0283205, 2023.
Article in English | MEDLINE | ID: mdl-36930608

ABSTRACT

The problem of high stress conditions is a critical challenge for mining activity in deep metal mines, and the difficulty and economic cost of maintaining stope stability also increases. In order to ensure stope stability in the mining process, it is necessary to evaluate stope stability for a more stable stope structure. However, there are many kinds of methods for rock stability assessment, and most of them are based on empirical and analytical methods, which lead to uncertain results. In this paper, a comprehensive evaluation method including factors of stope stability, self-stabilization time, maximum safety span, and support measure is determined, which is more likely to provide a comprehensive result. Finally, it was verified by the field application in Jiaojia Gold Mine. Results show that it can accurately evaluate the stope stability from different aspects compared with the traditional single evaluation method, and it leads to a more comprehensive and reliable result.


Subject(s)
Gold , Mining
SELECTION OF CITATIONS
SEARCH DETAIL