Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Magn Reson ; 347: 107357, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36563418

ABSTRACT

The analysis of nuclear magnetic resonance (NMR) spectra to detect peaks and characterize their parameters, often referred to as deconvolution, is a crucial step in the quantification, elucidation, and verification of the structure of molecular systems. However, deconvolution of 1D NMR spectra is a challenge for both experts and machines. We propose a robust, expert-level quality deep learning-based deconvolution algorithm for 1D experimental NMR spectra. The algorithm is based on a neural network trained on synthetic spectra. Our customized pre-processing and labeling of the synthetic spectra enable the estimation of critical peak parameters. Furthermore, the neural network model transfers well to the experimental spectra and demonstrates low fitting errors and sparse peak lists in challenging scenarios such as crowded, high dynamic range, shoulder peak regions as well as broad peaks. We demonstrate in challenging spectra that the proposed algorithm is superior to expert results.

2.
Rev Sci Instrum ; 92(5): 054502, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243344

ABSTRACT

We describe a torsion pendulum with a large mass-quadrupole moment and a resonant frequency of 2.8 mHz, whose angle is measured using a Michelson interferometer. The system achieved noise levels of ∼200prad/Hz between 0.2 and 30 Hz and ∼10prad/Hz above 100 Hz. Such a system can be applied to a broad range of fields from the study of rotational seismic motion and elastogravity signals to gravitational wave observation and tests of gravity.

SELECTION OF CITATIONS
SEARCH DETAIL