Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Nature ; 559(7715): 617-621, 2018 07.
Article in English | MEDLINE | ID: mdl-30022160

ABSTRACT

Gram-negative bacteria possess a complex cell envelope that consists of a plasma membrane, a peptidoglycan cell wall and an outer membrane. The envelope is a selective chemical barrier1 that defines cell shape2 and allows the cell to sustain large mechanical loads such as turgor pressure3. It is widely believed that the covalently cross-linked cell wall underpins the mechanical properties of the envelope4,5. Here we show that the stiffness and strength of Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, either chemically or genetically, greatly increased deformation of the cell envelope in response to stretching, bending and indentation forces, and induced increased levels of cell lysis upon mechanical perturbation and during L-form proliferation. Both lipopolysaccharides and proteins contributed to the stiffness of the outer membrane. These findings overturn the prevailing dogma that the cell wall is the dominant mechanical element within Gram-negative bacteria, instead demonstrating that the outer membrane can be stiffer than the cell wall, and that mechanical loads are often balanced between these structures.


Subject(s)
Cell Membrane/metabolism , Cell Wall/metabolism , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/metabolism , Cell Membrane/drug effects , Cell Wall/drug effects , Detergents/pharmacology , Escherichia coli/cytology , Escherichia coli/drug effects , Escherichia coli/metabolism , Gram-Negative Bacteria/drug effects , Microbial Viability/drug effects , Weight-Bearing
2.
Soft Matter ; 19(38): 7349-7357, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37740382

ABSTRACT

The twisting and writhing of a cell body and associated mechanical stresses is an underappreciated constraint on microbial self-propulsion. Multi-flagellated bacteria can even buckle and writhe under their own activity as they swim through a viscous fluid. New equilibrium configurations and steady-state dynamics then emerge which depend on the organism's mechanical properties and on the oriented distribution of flagella along its surface. Modeling the cell body as a semi-flexible Kirchhoff rod and coupling the mechanics to a flagellar orientation field, we derive the Euler-Poincaré equations governing the dynamics of the system, and rationalize experimental observations of buckling and writhing of elongated swarmer cells of the bacterium Proteus mirabilis. A sequence of bifurcations is identified as the body is made more compliant, due to both buckling and torsional instabilities. These studies highlight a practical requirement for the stiffness of bacteria below which self-buckling occurs and cell motility becomes ineffective.


Subject(s)
Bacteria , Flagella , Viscosity , Swimming
3.
Mol Cell ; 60(3): 374-84, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26481664

ABSTRACT

We characterize the interaction of RecA with membranes in vivo and in vitro and demonstrate that RecA binds tightly to the anionic phospholipids cardiolipin (CL) and phosphatidylglycerol (PG). Using computational models, we identify two regions of RecA that interact with PG and CL: (1) the N-terminal helix and (2) loop L2. Mutating these regions decreased the affinity of RecA to PG and CL in vitro. Using 3D super-resolution microscopy, we demonstrate that depleting Escherichia coli PG and CL altered the localization of RecA foci and hindered the formation of RecA filament bundles. Consequently, E. coli cells lacking aPLs fail to initiate a robust SOS response after DNA damage, indicating that the membrane acts as a scaffold for nucleating the formation of RecA filament bundles and plays an important role in the SOS response.


Subject(s)
Cardiolipins/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Phosphatidylglycerols/metabolism , Rec A Recombinases/metabolism , Cardiolipins/genetics , Cell Membrane/genetics , DNA Damage , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Phosphatidylglycerols/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Rec A Recombinases/genetics , SOS Response, Genetics/physiology
4.
Proc Natl Acad Sci U S A ; 115(20): 5271-5276, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29703753

ABSTRACT

Control and manipulation of bacterial populations requires an understanding of the factors that govern growth, division, and antibiotic action. Fluorescent and chemically reactive small molecule probes of cell envelope components can visualize these processes and advance our knowledge of cell envelope biosynthesis (e.g., peptidoglycan production). Still, fundamental gaps remain in our understanding of the spatial and temporal dynamics of cell envelope assembly. Previously described reporters require steps that limit their use to static imaging. Probes that can be used for real-time imaging would advance our understanding of cell envelope construction. To this end, we synthesized a fluorogenic probe that enables continuous live cell imaging in mycobacteria and related genera. This probe reports on the mycolyltransferases that assemble the mycolic acid membrane. This peptidoglycan-anchored bilayer-like assembly functions to protect these cells from antibiotics and host defenses. Our probe, quencher-trehalose-fluorophore (QTF), is an analog of the natural mycolyltransferase substrate. Mycolyltransferases process QTF by diverting their normal transesterification activity to hydrolysis, a process that unleashes fluorescence. QTF enables high contrast continuous imaging and the visualization of mycolyltransferase activity in cells. QTF revealed that mycolyltransferase activity is augmented before cell division and localized to the septa and cell poles, especially at the old pole. This observed localization suggests that mycolyltransferases are components of extracellular cell envelope assemblies, in analogy to the intracellular divisomes and polar elongation complexes. We anticipate QTF can be exploited to detect and monitor mycobacteria in physiologically relevant environments.


Subject(s)
Cell Wall/metabolism , Cord Factors/metabolism , Corynebacterium glutamicum/growth & development , Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted/methods , Mycobacterium tuberculosis/growth & development , Tuberculosis/diagnosis , Bacterial Proteins/metabolism , Cell Division , Fluorescence , Humans , Peptidoglycan/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology
5.
FASEB J ; 33(5): 6354-6364, 2019 05.
Article in English | MEDLINE | ID: mdl-30786218

ABSTRACT

A central question in cell biology is how cells respond to stress signals and biochemically regulate apoptosis. One critical pathway involves the change of mitochondrial function and release of cytochrome c to initiate apoptosis. In response to apoptotic stimuli, we found that maspin-a noninhibitory member of the serine protease inhibitor superfamily-translocates from the cytosol to mitochondria and binds to cardiolipin in the inner mitochondrial membrane. Biolayer interferometry assay revealed that recombinant maspin binds cardiolipin with an apparent Kd,of ∼15.8 µM and competes with cytochrome c (apparent Kd of ∼1.31 µM) for binding to cardiolipin-enriched membranes. A hydrophobic, lysine-rich domain in maspin consists of 27 aa, is located at position 268-294, and is responsible for the interaction of this protein with cardiolipin. Depletion of cardiolipin in cells significantly prevents maspin binding to the inner mitochondrial membrane and decreases cytochrome c release and apoptosis. Alteration to maspin's cardiolipin binding domain changes its ability to bind cardiolipin, and tumor cells expressing this mutant have a low frequency of apoptosis. We propose a model of apoptosis in which maspin binds to cardiolipin, displaces cytochrome c from the membrane, and facilitates its release to the cytoplasm.-Mahajan, N., Hoover, B., Rajendram, M., Shi, H. Y., Kawasaki, K., Weibel, D. B., Zhang, M. Maspin binds to cardiolipin in mitochondria and triggers apoptosis.


Subject(s)
Apoptosis , Cardiolipins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Serpins/metabolism , Animals , CHO Cells , Cardiolipins/genetics , Cricetulus , Cytochromes c/genetics , Cytochromes c/metabolism , Mice , Mitochondria/genetics , Protein Binding , Serpins/genetics
6.
J Bacteriol ; 201(9)2019 05 01.
Article in English | MEDLINE | ID: mdl-30782633

ABSTRACT

Biofilm formation is a complex process that requires a number of transcriptional, proteomic, and physiological changes to enable bacterial survival. The lipid membrane presents a barrier to communication between the machinery within bacteria and the physical and chemical features of their extracellular environment, and yet little is known about how the membrane influences biofilm development. We found that depleting the anionic phospholipid cardiolipin reduces biofilm formation in Escherichia coli cells by as much as 50%. The absence of cardiolipin activates the regulation of colanic acid synthesis (Rcs) envelope stress response, which represses the production of flagella, disrupts initial biofilm attachment, and reduces biofilm growth. We demonstrate that a reduction in the concentration of cardiolipin impairs translocation of proteins across the inner membrane, which we hypothesize activates the Rcs pathway through the outer membrane lipoprotein RcsF. Our study demonstrates a molecular connection between the composition of membrane phospholipids and biofilm formation in E. coli and suggests that altering lipid biosynthesis may be a viable approach for altering biofilm formation and possibly other multicellular phenotypes related to bacterial adaptation and survival.IMPORTANCE There is a growing interest in the role of lipid membrane composition in the physiology and adaptation of bacteria. We demonstrate that a reduction in the anionic phospholipid cardiolipin impairs biofilm formation in Escherichia coli cells. Depleting cardiolipin reduced protein translocation across the inner membrane and activated the Rcs envelope stress response. Consequently, cardiolipin depletion produced cells lacking assembled flagella, which impacted their ability to attach to surfaces and seed the earliest stage in biofilm formation. This study provides empirical evidence for the role of anionic phospholipid homeostasis in protein translocation and its effect on biofilm development and highlights modulation of the membrane composition as a potential method of altering bacterial phenotypes related to adaptation and survival.


Subject(s)
Biofilms/growth & development , Cardiolipins/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/growth & development , Signal Transduction , Cholic Acids/metabolism , Protein Transport , Stress, Physiological
7.
J Biol Chem ; 293(5): 1623-1641, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29233891

ABSTRACT

In Escherichia coli, FtsLB plays a central role in the initiation of cell division, possibly transducing a signal that will eventually lead to the activation of peptidoglycan remodeling at the forming septum. The molecular mechanisms by which FtsLB operates in the divisome, however, are not understood. Here, we present a structural analysis of the FtsLB complex, performed with biophysical, computational, and in vivo methods, that establishes the organization of the transmembrane region and proximal coiled coil of the complex. FRET analysis in vitro is consistent with formation of a tetramer composed of two FtsL and two FtsB subunits. We predicted subunit contacts through co-evolutionary analysis and used them to compute a structural model of the complex. The transmembrane region of FtsLB is stabilized by hydrophobic packing and by a complex network of hydrogen bonds. The coiled coil domain probably terminates near the critical constriction control domain, which might correspond to a structural transition. The presence of strongly polar amino acids within the core of the tetrameric coiled coil suggests that the coil may split into two independent FtsQ-binding domains. The helix of FtsB is interrupted between the transmembrane and coiled coil regions by a flexible Gly-rich linker. Conversely, the data suggest that FtsL forms an uninterrupted helix across the two regions and that the integrity of this helix is indispensable for the function of the complex. The FtsL helix is thus a candidate for acting as a potential mechanical connection to communicate conformational changes between periplasmic, membrane, and cytoplasmic regions.


Subject(s)
Cell Cycle Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/chemistry , Membrane Proteins/chemistry , Models, Molecular , Multiprotein Complexes/chemistry , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Periplasm/chemistry , Periplasm/genetics , Periplasm/metabolism , Protein Structure, Secondary
8.
Microb Ecol ; 78(2): 336-347, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30474730

ABSTRACT

Staphylococcus aureus, an opportunistic pathogen member of the nasal and skin microbiota, can also be found in human oral samples and has been linked to infectious diseases of the oral cavity. As the nasal and oral cavities are anatomically connected, it is currently unclear whether S. aureus can colonize the oral cavity and become part of the oral microbiota, or if its presence in the oral cavity is simply transient. To start addressing this question, we assessed S. aureus ability to directly bind selected members of the oral microbiota as well as its ability to integrate into a human-derived complex oral microbial community in vitro. Our data show that S. aureus forms aggregates with Fusobacterium nucleatum and Porphyromonas gingivalis and that it can incorporate into the human-derived in vitro oral community. Further analysis of the F. nucleatum-S. aureus interaction revealed that the outer-membrane adhesin RadD is partially involved in aggregate formation and that the RadD-mediated interaction leads to an increase in expression of the staphylococcal global regulator gene sarA. Our findings lend support to the notion that S. aureus can become part of the complex microbiota of the human mouth, which could serve as a reservoir for S. aureus. Furthermore, direct interaction with key members of the oral microbiota could affect S. aureus pathogenicity contributing to the development of several S. aureus associated oral infections.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Fusobacterium nucleatum/metabolism , Microbiota , Mouth/microbiology , Staphylococcus aureus/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Biofilms , Fusobacterium nucleatum/genetics , Humans , Protein Binding , Staphylococcus aureus/genetics
9.
Proc Natl Acad Sci U S A ; 113(20): 5564-9, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27140607

ABSTRACT

Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (∼0.01 mN/m) associated with the GUV-LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.

10.
Biochemistry ; 56(29): 3710-3724, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28666084

ABSTRACT

Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the ß-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.


Subject(s)
Cell Membrane , Cell Wall , Gram-Negative Bacteria , Gram-Positive Bacteria , Adaptation, Physiological/physiology , Cell Membrane/chemistry , Cell Membrane/metabolism , Cell Wall/chemistry , Cell Wall/metabolism , Gram-Negative Bacteria/chemistry , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/chemistry , Gram-Positive Bacteria/metabolism , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Lipopolysaccharides/chemistry , Lipopolysaccharides/metabolism , Microbial Viability , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Teichoic Acids/chemistry , Teichoic Acids/metabolism
11.
Appl Environ Microbiol ; 83(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27986722

ABSTRACT

An estimated 1.5 billion microbial infections occur globally each year and result in ∼4.6 million deaths. A technology gap associated with commercially available diagnostic tests in remote and underdeveloped regions prevents timely pathogen identification for effective antibiotic chemotherapies for infected patients. The result is a trial-and-error approach that is limited in effectiveness, increases risk for patients while contributing to antimicrobial drug resistance, and reduces the lifetime of antibiotics. This paper addresses this important diagnostic technology gap by describing a low-cost, portable, rapid, and easy-to-use microfluidic cartridge-based system for detecting the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) bacterial pathogens that are most commonly associated with antibiotic resistance. The point-of-care molecular diagnostic system consists of a vacuum-degassed microfluidic cartridge preloaded with lyophilized recombinase polymerase amplification (RPA) assays and a small portable battery-powered electronic incubator/reader. The isothermal RPA assays detect the targeted ESKAPE pathogens with high sensitivity (e.g., a limit of detection of ∼10 nucleic acid molecules) that is comparable to that of current PCR-based assays, and they offer advantages in power consumption, engineering, and robustness, which are three critical elements required for the point-of-care setting. IMPORTANCE: This paper describes a portable system for rapidly identifying bacteria in resource-limited environments; we highlight the capabilities of the technology by detecting different pathogens within the ESKAPE collection, which cause nosocomial infections. The system is designed around isothermal DNA-based assays housed within an autonomous plastic cartridge that are designed with the end user in mind, who may have limited technological training. Displaying excellent sensitivity and specificity, the assay systems that we demonstrate may enable future diagnoses of bacterial infection to guide the development of effective chemotherapies and may have a role in areas beyond health where rapid detection is valuable, including in industrial processing and manufacturing, food security, agriculture, and water quality testing.


Subject(s)
Bacterial Infections/diagnosis , Cross Infection/diagnosis , DNA, Bacterial/analysis , Lab-On-A-Chip Devices , Microfluidics/methods , Point-of-Care Systems , Acinetobacter baumannii/classification , Acinetobacter baumannii/genetics , Bacterial Infections/microbiology , Cross Infection/microbiology , DNA Primers/genetics , DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Enterobacter/classification , Enterobacter/genetics , Enterococcus faecium/classification , Enterococcus faecium/genetics , Humans , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/genetics , Microfluidics/instrumentation , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/genetics , Staphylococcus aureus/classification , Staphylococcus aureus/genetics
12.
PLoS Comput Biol ; 12(9): e1005041, 2016 09.
Article in English | MEDLINE | ID: mdl-27599206

ABSTRACT

Understanding how stochastic molecular fluctuations affect cell behavior requires the quantification of both behavior and protein numbers in the same cells. Here, we combine automated microscopy with in situ hydrogel polymerization to measure single-cell protein expression after tracking swimming behavior. We characterized the distribution of non-genetic phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of single-cell measurements. Our results disagreed with established models until we incorporated the role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond refining models, our central finding is that changes in numbers of CheR and CheB affect the population mean tumble bias and its variance independently. Therefore, it is possible to adjust the degree of phenotypic diversity of a population by adjusting the global level of expression of CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers functional robustness to the system. Since genetic control of protein expression is heritable, our results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier hypotheses that such diversity confers a selective advantage.


Subject(s)
Chemotaxis/physiology , Escherichia coli Proteins/analysis , Escherichia coli/metabolism , Escherichia coli/physiology , Computational Biology , Escherichia coli Proteins/metabolism , Methyltransferases/analysis , Methyltransferases/metabolism , Single-Cell Analysis
13.
Bioorg Med Chem Lett ; 26(22): 5539-5544, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27765507

ABSTRACT

Antibiotic adjuvant therapy represents an exciting opportunity to enhance the activity of clinical antibiotics by co-dosing with a secondary small molecule. Successful adjuvants decrease the concentration of antibiotics used to defeat bacteria, increase activity (in some cases introducing activity against organisms that are drug resistant), and reduce the frequency at which drug-resistant bacteria emerge. We report that 5-alkyloxytryptamines are a new class of broad-spectrum antibacterial agents with exciting activity as antibiotic adjuvants. We synthesized 5-alkyloxytryptamine analogs and found that an alkyl chain length of 6-12 carbons and a primary ammonium group are necessary for the antibacterial activity of the compounds, and an alkyl chain length of 6-10 carbons increased the membrane permeability of Gram-positive and Gram-negative bacteria. Although several of the most potent analogs also have activity against the membranes of human embryonic kidney cells, we demonstrate that below the minimum inhibitory concentration (MIC)-where mammalian cell toxicity is low-these compounds may be successfully used as adjuvants for chloramphenicol, tetracycline, ciprofloxacin, and rifampicin against clinical strains of Salmonella typhimurium, Acinetobacter baumannii and Staphylococcus aureus, reducing MIC values by as much as several logs.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Tryptamines/chemistry , Tryptamines/pharmacology , Acinetobacter baumannii/drug effects , Alkylation , Gram-Negative Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/drug therapy , HEK293 Cells , Humans , Salmonella typhimurium/drug effects , Staphylococcus aureus/drug effects
14.
Appl Microbiol Biotechnol ; 100(10): 4255-67, 2016 May.
Article in English | MEDLINE | ID: mdl-27026177

ABSTRACT

In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.


Subject(s)
Bacteria/chemistry , Membrane Proteins/physiology , Phospholipids/physiology , Anions/chemistry , Bacterial Proteins/physiology , Cell Membrane/physiology
15.
J Bacteriol ; 197(21): 3446-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26283770

ABSTRACT

UNLABELLED: Cell shape has been suggested to play an important role in the regulation of bacterial attachment to surfaces and the formation of communities associated with surfaces. We found that a cardiolipin synthase (Δcls) mutant of the rod-shaped bacterium Rhodobacter sphaeroides--in which synthesis of the anionic, highly curved phospholipid cardiolipin (CL) is reduced by 90%--produces ellipsoid-shaped cells that are impaired in biofilm formation. Reducing the concentration of CL did not cause significant defects in R. sphaeroides cell growth, swimming motility, lipopolysaccharide and exopolysaccharide production, surface adhesion protein expression, and membrane permeability. Complementation of the CL-deficient mutant by ectopically expressing CL synthase restored cells to their rod shape and increased biofilm formation. Treating R. sphaeroides cells with a low concentration (10 µg/ml) of the small-molecule MreB inhibitor S-(3,4-dichlorobenzyl)isothiourea produced ellipsoid-shaped cells that had no obvious growth defect yet reduced R. sphaeroides biofilm formation. This study demonstrates that CL plays a role in R. sphaeroides cell shape determination, biofilm formation, and the ability of the bacterium to adapt to its environment. IMPORTANCE: Membrane composition plays a fundamental role in the adaptation of many bacteria to environmental stress. In this study, we build a new connection between the anionic phospholipid cardiolipin (CL) and cellular adaptation in Rhodobacter sphaeroides. We demonstrate that CL plays a role in the regulation of R. sphaeroides morphology and is important for the ability of this bacterium to form biofilms. This study correlates CL concentration, cell shape, and biofilm formation and provides the first example of how membrane composition in bacteria alters cell morphology and influences adaptation. This study also provides insight into the potential of phospholipid biosynthesis as a target for new chemical strategies designed to alter or prevent biofilm formation.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Cardiolipins/metabolism , Membrane Proteins/deficiency , Rhodobacter sphaeroides/cytology , Rhodobacter sphaeroides/enzymology , Transferases (Other Substituted Phosphate Groups)/deficiency , Bacterial Proteins/genetics , Membrane Proteins/genetics , Mutation , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/physiology , Transferases (Other Substituted Phosphate Groups)/genetics
16.
Mol Microbiol ; 92(5): 985-1004, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24720726

ABSTRACT

Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans-envelope Tol-Pal complex, a widely conserved component of the cell envelope of Gram-negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol-Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol-Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol-Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co-ordinate cell division and segregation of the chemosensory machinery.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Bacterial Proteins/metabolism
17.
J Clin Microbiol ; 53(9): 2810-5, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26085615

ABSTRACT

Contagious caprine pleuropneumonia (CCPP) is a highly contagious disease caused by Mycoplasma capricolum subsp. capripneumoniae that affects goats in Africa and Asia. Current available methods for the diagnosis of Mycoplasma infection, including cultivation, serological assays, and PCR, are time-consuming and require fully equipped stationary laboratories, which make them incompatible with testing in the resource-poor settings that are most relevant to this disease. We report a rapid, specific, and sensitive assay employing isothermal DNA amplification using recombinase polymerase amplification (RPA) for the detection of M. capricolum subsp. capripneumoniae. We developed the assay using a specific target sequence in M. capricolum subsp. capripneumoniae, as found in the genome sequence of the field strain ILRI181 and the type strain F38 and that was further evidenced in 10 field strains from different geographical regions. Detection limits corresponding to 5 × 10(3) and 5 × 10(4) cells/ml were obtained using genomic DNA and bacterial culture from M. capricolum subsp. capripneumoniae strain ILRI181, while no amplification was obtained from 71 related Mycoplasma isolates or from the Acholeplasma or the Pasteurella isolates, demonstrating a high degree of specificity. The assay produces a fluorescent signal within 15 to 20 min and worked well using pleural fluid obtained directly from CCPP-positive animals without prior DNA extraction. We demonstrate that the diagnosis of CCPP can be achieved, with a short sample preparation time and a simple read-out device that can be powered by a car battery, in <45 min in a simulated field setting.


Subject(s)
Molecular Diagnostic Techniques/methods , Mycoplasma capricolum/isolation & purification , Nucleic Acid Amplification Techniques/methods , Pleuropneumonia, Contagious/diagnosis , Veterinary Medicine/methods , Animals , Goats , Sensitivity and Specificity , Time Factors
18.
Chembiochem ; 16(15): 2151-5, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26285783

ABSTRACT

Motile bacteria navigate chemical environments by using chemoreceptors. The output of these protein sensors is linked to motility machinery and enables bacteria to follow chemical gradients. Understanding the chemical specificity of different families of chemoreceptors is essential for predicting and controlling bacterial behavior in ecological niches, including symbiotic and pathogenic interactions with plants and mammals. The identification of chemical(s) recognized by specific families of receptors is limited by the low throughput and complexity of chemotaxis assays. To address this challenge, we developed a microfluidic-based chemotaxis assay that is quantitative, simple, and enables high-throughput measurements of bacterial response to different chemicals. Using the model bacterium Escherichia coli, we demonstrated a strategy for identifying molecules that activate chemoreceptors from a diverse compound library and for determining how global behavioral strategies are tuned to chemical environments.


Subject(s)
Chemotaxis/drug effects , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology , Escherichia coli/drug effects , Escherichia coli/physiology , High-Throughput Screening Assays , Microfluidic Analytical Techniques
19.
Soft Matter ; 11(34): 6821-31, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26224035

ABSTRACT

We report on the organization and dynamics of bacteria (Proteus mirabilis) dispersed within lyotropic liquid crystal (LC) films confined by pairs of surfaces that induce homeotropic (perpendicular) or hybrid (homeotropic and parallel orientations at each surface) anchoring of the LC. By using motile vegetative bacteria (3 µm in length) and homeotropically aligned LC films with thicknesses that exceed the length of the rod-shaped cells, a key finding reported in this paper is that elastic torques generated by the LC are sufficiently large to overcome wall-induced hydrodynamic torques acting on the cells, thus leading to LC-guided bacterial motion near surfaces that orient LCs. This result extends to bacteria within LC films with hybrid anchoring, and leads to the observation that asymmetric strain within a hybrid aligned LC rectifies motions of motile cells. In contrast, when the LC film thickness is sufficiently small that confinement prevents alignment of the bacteria cells along a homeotropically aligned LC director (achieved using swarm cells of length 10-60 µm), the bacterial cells propel in directions orthogonal to the director, generating transient distortions in the LC that have striking "comet-like" optical signatures. In this limit, for hybrid LC films, we find LC elastic stresses deform the bodies of swarm cells into bent configurations that follow the LC director, thus unmasking a coupling between bacterial shape and LC strain. Overall, these results provide new insight into the influence of surface-oriented LCs on dynamical bacterial behaviors and hint at novel ways to manipulate bacteria using confined LC phases that are not possible in isotropic solutions.


Subject(s)
Liquid Crystals/chemistry , Proteus mirabilis/physiology , Stress, Mechanical , Hydrodynamics , Movement/drug effects , Proteus mirabilis/cytology , Proteus mirabilis/drug effects , Surface Properties
20.
Soft Matter ; 11(43): 8404-8, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26382153

ABSTRACT

We describe the controlled transport and delivery of non-motile eukaryotic cells and polymer microparticles by swimming bacteria suspended in nematic liquid crystals. The bacteria push reversibly attached cargo in a stable, unidirectional path (or along a complex patterned director field) over exceptionally long distances. Numerical simulations and analytical predictions for swimming speeds provide a mechanistic insight into the hydrodynamics of the system. This study lays the foundation for using cargo-carrying bacteria in engineering applications and for understanding interspecies interactions in polymicrobial communities.


Subject(s)
Colloids/chemistry , Hydrodynamics , Liquid Crystals , Movement , Proteus mirabilis/physiology , Models, Chemical , Motion
SELECTION OF CITATIONS
SEARCH DETAIL