Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Genes Dev ; 23(10): 1207-20, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19451221

ABSTRACT

UVB-induced lesions in mammalian cellular DNA can, through the process of mutagenesis, lead to carcinogenesis. However, eukaryotic cells have evolved complex mechanisms of genomic surveillance and DNA damage repair to counteract the effects of UVB radiation. We show that following UVB DNA damage, there is an overall inhibition of protein synthesis and translational reprogramming. This reprogramming allows selective synthesis of DDR proteins, such as ERCC1, ERCC5, DDB1, XPA, XPD, and OGG1 and relies on upstream ORFs in the 5' untranslated region of these mRNAs. Experiments with DNA-PKcs-deficient cell lines and a specific DNA-PKcs inhibitor demonstrate that both the general repression of mRNA translation and the preferential translation of specific mRNAs depend on DNA-PKcs activity, and therefore our data establish a link between a key DNA damage signaling component and protein synthesis.


Subject(s)
Calcium-Binding Proteins/metabolism , DNA Repair Enzymes/metabolism , Polyribosomes/metabolism , Protein Biosynthesis/radiation effects , Protein Transport/radiation effects , RNA, Messenger/metabolism , Ultraviolet Rays , Cell Line, Tumor , DNA Damage/radiation effects , DNA Repair Enzymes/genetics , Gene Expression Regulation/radiation effects , HeLa Cells , Humans , Oligonucleotide Array Sequence Analysis , Open Reading Frames , Protein Biosynthesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL