Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 183(1): 197-210.e32, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007263

ABSTRACT

Cancer genomes often harbor hundreds of somatic DNA rearrangement junctions, many of which cannot be easily classified into simple (e.g., deletion) or complex (e.g., chromothripsis) structural variant classes. Applying a novel genome graph computational paradigm to analyze the topology of junction copy number (JCN) across 2,778 tumor whole-genome sequences, we uncovered three novel complex rearrangement phenomena: pyrgo, rigma, and tyfonas. Pyrgo are "towers" of low-JCN duplications associated with early-replicating regions, superenhancers, and breast or ovarian cancers. Rigma comprise "chasms" of low-JCN deletions enriched in late-replicating fragile sites and gastrointestinal carcinomas. Tyfonas are "typhoons" of high-JCN junctions and fold-back inversions associated with expressed protein-coding fusions, breakend hypermutation, and acral, but not cutaneous, melanomas. Clustering of tumors according to genome graph-derived features identified subgroups associated with DNA repair defects and poor prognosis.


Subject(s)
Genomic Structural Variation/genetics , Genomics/methods , Neoplasms/genetics , Chromosome Inversion/genetics , Chromothripsis , DNA Copy Number Variations/genetics , Gene Rearrangement/genetics , Genome, Human/genetics , Humans , Mutation/genetics , Whole Genome Sequencing/methods
2.
Mod Pathol ; 37(4): 100452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38369186

ABSTRACT

The molecular characterization of male breast cancer (MaBC) has received limited attention in research, mostly because of its low incidence rate, accounting for only 0.5% to 1% of all reported cases of breast cancer each year. Managing MaBC presents significant challenges, with most treatment protocols being adapted from those developed for female breast cancer. Utilizing whole-genome sequencing (WGS) and state-of-the-art analyses, the genomic features of 10 MaBC cases (n = 10) were delineated and correlated with clinical and histopathologic characteristics. Using fluorescence in situ hybridization, an additional cohort of 18 patients was interrogated to supplement WGS findings. The genomic landscape of MaBC uncovered significant genetic alterations that could influence diagnosis and treatment. We found common somatic mutations in key driver genes, such as FAT1, GATA3, SMARCA4, and ARID2. Our study also mapped out structural variants that impact cancer-associated genes, such as ARID1A, ESR1, GATA3, NTRK1, and NF1. Using a WGS-based classifier, homologous recombination deficiency (HRD) was identified in 2 cases, both presenting with deleterious variants in BRCA2. Noteworthy was the observation of FGFR1 amplification in 21% of cases. Altogether, we identified at least 1 potential therapeutic target in 8 of the 10 cases, including high tumor mutational burden, FGFR1 amplification, and HRD. Our study is the first WGS characterization of MaBC, which uncovered potentially relevant variants, including structural events in cancer genes, HRD signatures, and germline pathogenic mutations. Our results demonstrate unique genetic markers and potential treatment targets in MaBC, thereby underlining the necessity of tailoring treatment strategies for this understudied patient population. These WGS-based findings add to the growing knowledge of MaBC genomics and highlight the need to expand research on this type of cancer.


Subject(s)
Breast Neoplasms, Male , Breast Neoplasms , Humans , Male , Female , Breast Neoplasms, Male/genetics , Breast Neoplasms, Male/therapy , In Situ Hybridization, Fluorescence , Mutation , Breast Neoplasms/pathology , Oncogenes , Germ-Line Mutation , DNA Helicases/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics
3.
Immunity ; 38(2): 360-72, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23376058

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine important for the initiation and development of T helper (Th2) cell-mediated allergic inflammation. In this study, we identified a positive association between interleukin-9 (IL-9) and TSLP concentration in the serum of infants with atopic dermatitis. In primary cell cultures, the addition of TSLP led to an increase in IL-9 production from human and mouse Th9 cells, and induced an increase in signal transducer and activator of transcription 5 (STAT5) activation and binding to the Il9 promoter. In vivo, use of an adoptive transfer model demonstrated that TSLP promoted IL-9-dependent, Th9 cell-induced allergic inflammation by acting directly on T cells. Moreover, transgenic expression of TSLP in the lung stimulated IL-9 production in vivo, and anti-IL-9 treatment attenuated TSLP-induced airway inflammation. Together, our results demonstrate that TSLP promotes Th9 cell differentiation and function and define a requirement for IL-9 in TSLP-induced allergic inflammation.


Subject(s)
Cytokines/immunology , Dermatitis, Atopic/immunology , Inflammation/immunology , Interleukin-9/immunology , STAT5 Transcription Factor/immunology , Th2 Cells/immunology , Adoptive Transfer , Animals , Antibodies, Neutralizing/pharmacology , Cell Differentiation/drug effects , Cytokines/genetics , Cytokines/pharmacology , Dermatitis, Atopic/genetics , Dermatitis, Atopic/pathology , Gene Expression/drug effects , Humans , Infant , Inflammation/genetics , Inflammation/pathology , Interleukin-9/antagonists & inhibitors , Interleukin-9/genetics , Lymph Nodes/drug effects , Lymph Nodes/immunology , Lymph Nodes/pathology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Primary Cell Culture , Promoter Regions, Genetic , Protein Binding , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/pathology , STAT5 Transcription Factor/agonists , STAT5 Transcription Factor/genetics , Signal Transduction/drug effects , Th2 Cells/drug effects , Th2 Cells/pathology , Thymic Stromal Lymphopoietin
4.
Am J Respir Crit Care Med ; 204(9): 1060-1074, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34346860

ABSTRACT

Rationale: Primary graft dysfunction (PGD) is a severe form of acute lung injury, leading to increased early morbidity and mortality after lung transplant. Obesity is a major health problem, and recipient obesity is one of the most significant risk factors for developing PGD. Objectives: We hypothesized that T-regulatory cells (Tregs) are able to dampen early ischemia-reperfusion events and thereby decrease the risk of PGD, whereas that action is impaired in obese recipients. Methods: We evaluated Tregs, T cells, and inflammatory markers, plus clinical data, in 79 lung transplant recipients and 41 liver or kidney transplant recipients and studied two groups of mice on a high-fat diet (HFD), which did ("inflammatory" HFD) or did not ("healthy" HFD) develop low-grade inflammation with decreased Treg function. Measurements and Main Results: We identified increased levels of IL-18 as a previously unrecognized mechanism that impairs Tregs' suppressive function in obese individuals. IL-18 decreases levels of FOXP3, the key Treg transcription factor, decreases FOXP3 di- and oligomerization, and increases the ubiquitination and proteasomal degradation of FOXP3. IL-18-treated Tregs or Tregs from obese mice fail to control PGD, whereas IL-18 inhibition ameliorates lung inflammation. The IL-18-driven impairment in Tregs' suppressive function before transplant was associated with an increased risk and severity of PGD in clinical lung transplant recipients. Conclusions: Obesity-related IL-18 induces Treg dysfunction that may contribute to the pathogenesis of PGD. Evaluation of Tregs' suppressive function together with evaluation of IL-18 levels may serve as a screening tool to identify obese individuals with an increased risk of PGD before transplant.


Subject(s)
Acute Lung Injury/etiology , Interleukin-18/metabolism , Lung Transplantation/adverse effects , Obesity/complications , Primary Graft Dysfunction/etiology , Reperfusion Injury/etiology , T-Lymphocytes, Regulatory/metabolism , Acute Lung Injury/physiopathology , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Male , Mice , Mice, Obese , Middle Aged , Primary Graft Dysfunction/physiopathology , Reperfusion Injury/physiopathology
5.
Oncologist ; 26(11): e1971-e1981, 2021 11.
Article in English | MEDLINE | ID: mdl-34286887

ABSTRACT

BACKGROUND: Characterization of circulating tumor DNA (ctDNA) has been integrated into clinical practice. Although labs have standardized validation procedures to develop single locus tests, the efficacy of on-site plasma-based next-generation sequencing (NGS) assays still needs to be proved. MATERIALS AND METHODS: In this retrospective study, we profiled DNA from matched tissue and plasma samples from 75 patients with cancer. We applied an NGS test that detects clinically relevant alterations in 33 genes and microsatellite instability (MSI) to analyze plasma cell-free DNA (cfDNA). RESULTS: The concordance between alterations detected in both tissue and plasma samples was higher in patients with metastatic disease. The NGS test detected 77% of sequence alterations, amplifications, and fusions that were found in metastatic samples compared with 45% of those alterations found in the primary tumor samples (p = .00005). There was 87% agreement on MSI status between the NGS test and tumor tissue results. In three patients, MSI-high ctDNA correlated with response to immunotherapy. In addition, the NGS test revealed an FGFR2 amplification that was not detected in tumor tissue from a patient with metastatic gastric cancer, emphasizing the importance of profiling plasma samples in patients with advanced cancer. CONCLUSION: Our validation experience of a plasma-based NGS assay advances current knowledge about translating cfDNA testing into clinical practice and supports the application of plasma assays in the management of oncology patients with metastatic disease. With an in-house method that minimizes the need for invasive procedures, on-site cfDNA testing supplements tissue biopsy to guide precision therapy and is entitled to become a routine practice. IMPLICATIONS FOR PRACTICE: This study proposes a solution for decentralized liquid biopsy testing based on validation of a next-generation sequencing (NGS) test that detects four classes of genomic alterations in blood: sequence mutations (single nucleotide substitutions or insertions and deletions), fusions, amplifications, and microsatellite instability (MSI). Although there are reference labs that perform single-site comprehensive liquid biopsy testing, the targeted assay this study validated can be established locally in any lab with capacity to offer clinical molecular pathology assays. To the authors' knowledge, this is the first report that validates evaluating an on-site plasma-based NGS test that detects the MSI status along with common sequence alterations encountered in solid tumors.


Subject(s)
Circulating Tumor DNA , Neoplasms , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Humans , Microsatellite Instability , Neoplasms/genetics , Retrospective Studies
6.
J Immunol ; 201(2): 772-781, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29884698

ABSTRACT

Leukocyte-associated Ig-like receptor 1 (LAIR1) is an ITIM-bearing collagen receptor expressed by leukocytes and is implicated in immune suppression. However, using a divalent soluble LAIR1/Fc recombinant protein to block interaction of cell surface LAIR1 with matrix collagen, we found that whereas Th1 responses were enhanced as predicted, Th17 responses were strongly inhibited. Indeed, LAIR1 on both T cells and monocytes was required for optimal Th17 responses to collagen type (Col)V. For pre-existing "natural" Th17 response to ColV, the LAIR1 requirement was absolute, whereas adaptive Th17 and Th1/17 immune responses in both mice and humans were profoundly reduced in the absence of LAIR1. Furthermore, the addition of C1q, a natural LAIR1 ligand, decreased Th1 responses in a dose-dependent manner, but it had no effect on Th17 responses. In IL-17-dependent murine organ transplant models of chronic rejection, LAIR1+/+ but not LAIR1-/- littermates mounted strong fibroproliferative responses. Surface LAIR1 expression was higher on human Th17 cells as compared with Th1 cells, ruling out a receptor deficiency that could account for the differences. We conclude that LAIR1 ligation by its natural ligands favors Th17 cell development, allowing for preferential activity of these cells in collagen-rich environments. The emergence of cryptic self-antigens such as the LAIR1 ligand ColV during ischemia/reperfusion injury and early acute rejection, as well as the tendency of macrophages/monocytes to accumulate in the allograft during chronic rejection, favors Th17 over Th1 development, posing a risk to long-term graft survival.


Subject(s)
Graft Rejection/immunology , Receptors, Immunologic/metabolism , Th1 Cells/physiology , Th17 Cells/immunology , Animals , Autoantigens/immunology , Cells, Cultured , Collagen/metabolism , Humans , Immunity, Cellular , Immunomodulation , Interleukin-17/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Organ Transplantation , Protein Binding , Receptors, Immunologic/genetics
7.
Am J Transplant ; 19(10): 2705-2718, 2019 10.
Article in English | MEDLINE | ID: mdl-31278849

ABSTRACT

Despite standardized postoperative care, some lung transplant patients suffer multiple episodes of acute and chronic rejection while others avoid graft problems for reasons that are poorly understood. Using an established model of C57BL/10 to C57BL/6 minor antigen mismatched single lung transplantation, we now demonstrate that the recipient microbiota contributes to variability in the alloimmune response. Specifically, mice from the Envigo facility in Frederick, Maryland contain nearly double the number of CD4+ Foxp3+ regulatory T cells (Tregs ) than mice from the Jackson facility in Bar Harbor, Maine or the Envigo facility in Indianapolis, Indiana (18 vs 9 vs 7%). Lung graft recipients from the Maryland facility thus do not develop acute or chronic rejection. Treatment with broad-spectrum antibiotics decreases Tregs and increases both acute and chronic graft rejection in otherwise tolerant strains of mice. Constitutive depletion of regulatory T cells, using Foxp3-driven expression of diphtheria toxin receptor, leads to the development of chronic rejection and supports the role of Tregs in both acute and chronic alloimmunity. Taken together, our data demonstrate that the microbiota of certain individuals may contribute to tolerance through Treg -dependent mechanisms and challenges the practice of indiscriminate broad-spectrum antibiotic use in the perioperative period.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Commerce/standards , Forkhead Transcription Factors/physiology , Graft Rejection/prevention & control , Lung Diseases/immunology , Lung Transplantation/adverse effects , Microbiota , T-Lymphocytes, Regulatory/immunology , Allografts , Animals , CD4-Positive T-Lymphocytes/microbiology , Graft Rejection/etiology , Graft Rejection/metabolism , Graft Survival/immunology , Lung Diseases/microbiology , Lung Diseases/surgery , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/microbiology , Transplant Recipients
9.
Am J Respir Crit Care Med ; 197(2): 235-243, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28872353

ABSTRACT

RATIONALE: Primary graft dysfunction (PGD) is a form of acute lung injury that occurs after lung transplantation. The definition of PGD was standardized in 2005. Since that time, clinical practice has evolved, and this definition is increasingly used as a primary endpoint for clinical trials; therefore, validation is warranted. OBJECTIVES: We sought to determine whether refinements to the 2005 consensus definition could further improve construct validity. METHODS: Data from the Lung Transplant Outcomes Group multicenter cohort were used to compare variations on the PGD definition, including alternate oxygenation thresholds, inclusion of additional severity groups, and effects of procedure type and mechanical ventilation. Convergent and divergent validity were compared for mortality prediction and concurrent lung injury biomarker discrimination. MEASUREMENTS AND MAIN RESULTS: A total of 1,179 subjects from 10 centers were enrolled from 2007 to 2012. Median length of follow-up was 4 years (interquartile range = 2.4-5.9). No mortality differences were noted between no PGD (grade 0) and mild PGD (grade 1). Significantly better mortality discrimination was evident for all definitions using later time points (48, 72, or 48-72 hours; P < 0.001). Biomarker divergent discrimination was superior when collapsing grades 0 and 1. Additional severity grades, use of mechanical ventilation, and transplant procedure type had minimal or no effect on mortality or biomarker discrimination. CONCLUSIONS: The PGD consensus definition can be simplified by combining lower PGD grades. Construct validity of grading was present regardless of transplant procedure type or use of mechanical ventilation. Additional severity categories had minimal impact on mortality or biomarker discrimination.


Subject(s)
Cause of Death , Lung Transplantation/adverse effects , Primary Graft Dysfunction/mortality , Primary Graft Dysfunction/pathology , Adult , Biomarkers/analysis , Cohort Studies , Consensus , Female , Graft Rejection , Graft Survival , Humans , Kaplan-Meier Estimate , Logistic Models , Lung Transplantation/methods , Lung Transplantation/mortality , Male , Middle Aged , Proportional Hazards Models , Reproducibility of Results , Retrospective Studies , Risk Assessment , Severity of Illness Index , Survival Rate , Time Factors , United States , Young Adult
10.
J Biol Chem ; 291(7): 3359-70, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26721885

ABSTRACT

We have shown previously that collagen V (col(V)) autoimmunity is a consistent feature of atherosclerosis in human coronary artery disease and in the Apoe(-/-) mouse model. We have also shown sensitization of Apoe(-/-) mice with col(V) to markedly increase the atherosclerotic burden, providing evidence of a causative role for col(V) autoimmunity in atherosclerotic pathogenesis. Here we sought to determine whether induction of immune tolerance to col(V) might ameliorate atherosclerosis, providing further evidence for a causal role for col(V) autoimmunity in atherogenesis and providing insights into the potential for immunomodulatory therapeutic interventions. Mucosal inoculation successfully induced immune tolerance to col(V) with an accompanying reduction in plaque burden in Ldlr(-/-) mice on a high-cholesterol diet. The results therefore demonstrate that inoculation with col(V) can successfully ameliorate the atherosclerotic burden, suggesting novel approaches for therapeutic interventions. Surprisingly, tolerance and reduced atherosclerotic burden were both dependent on the recently described IL-35 and not on IL-10, the immunosuppressive cytokine usually studied in the context of induced tolerance and amelioration of atherosclerotic symptoms. In addition to the above, using recombinant protein fragments, we were able to localize two epitopes of the α1(V) chain involved in col(V) autoimmunity in atherosclerotic Ldlr(-/-) mice, suggesting future courses of experimentation for the characterization of such epitopes.


Subject(s)
Atherosclerosis/prevention & control , Autoimmunity , Collagen Type V/therapeutic use , Hypersensitivity, Delayed/prevention & control , Immune Tolerance , Interleukins/metabolism , Administration, Intranasal , Animals , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/metabolism , Atherosclerosis/etiology , Atherosclerosis/immunology , Atherosclerosis/metabolism , Cattle , Cells, Cultured , Collagen Type V/administration & dosage , Collagen Type V/chemistry , Collagen Type V/genetics , Diet, Western/adverse effects , Epitope Mapping , Humans , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/metabolism , Hypersensitivity, Delayed/physiopathology , Immunity, Mucosal , Interleukins/antagonists & inhibitors , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spleen/immunology , Spleen/metabolism , Spleen/pathology
11.
Am J Pathol ; 186(9): 2310-6, 2016 09.
Article in English | MEDLINE | ID: mdl-27392970

ABSTRACT

Idiopathic pulmonary fibrosis is a devastating disease, with no good diagnostic biomarker and limited treatment options. Previous studies suggest that collagen V overexpression and collagen V-mediated immune response play roles in the pathogenesis of idiopathic pulmonary fibrosis. This study aimed to identify dysregulated miRNA-related collagen V overexpression during idiopathic pulmonary fibrosis. We found that the expression levels of miR-185 and miR-186 were decreased in the lungs of idiopathic pulmonary fibrosis patients. The levels of miR-185 and miR-186 were not correlated with disease severity of idiopathic pulmonary fibrosis. The direct regulation of COL5A1 by miR-185 and miR-186 was confirmed by a luciferase reporter assay. Furthermore, mimics of miR-185 and miR-186 blocked transforming growth factor-ß-induced collagen V overexpression and alleviated transforming growth factor-ß-induced epithelial-mesenchymal transition in A549 cells and HCC827 cells. Our findings suggest that attenuated expression of miR-185 and miR-186 may be responsible for collagen V overexpression during idiopathic pulmonary fibrosis, and these miRNAs may serve as pathogenesis-related biomarkers and treatment targets.


Subject(s)
Collagen Type V/biosynthesis , Epithelial-Mesenchymal Transition/genetics , Idiopathic Pulmonary Fibrosis/pathology , MicroRNAs/metabolism , Aged , Blotting, Western , Female , Gene Expression Regulation/genetics , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Male , Middle Aged , Real-Time Polymerase Chain Reaction
12.
FASEB J ; 30(6): 2336-50, 2016 06.
Article in English | MEDLINE | ID: mdl-26956419

ABSTRACT

Complement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-ß and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-ß1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-ß/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.


Subject(s)
Fibroblasts/metabolism , Pulmonary Fibrosis/metabolism , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Complement/metabolism , Aged , Aged, 80 and over , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Cell Line , Collagen Type I, alpha 1 Chain , Complement Membrane Attack Complex/genetics , Complement Membrane Attack Complex/metabolism , Down-Regulation , Gene Expression Regulation/physiology , Humans , Lung Injury/chemically induced , Mice , Mice, Inbred C57BL , Middle Aged , Pulmonary Fibrosis/chemically induced , RNA Interference , Receptor, Anaphylatoxin C5a/genetics , Receptors, Complement/genetics , Signal Transduction/physiology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Up-Regulation
13.
Am J Respir Cell Mol Biol ; 55(6): 889-898, 2016 12.
Article in English | MEDLINE | ID: mdl-27494303

ABSTRACT

Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium.


Subject(s)
CD55 Antigens/metabolism , Epithelium/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lung/metabolism , Amino Acids, Dicarboxylic/pharmacology , Animals , Cell Hypoxia/drug effects , Complement Activation/drug effects , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelium/drug effects , Gene Silencing/drug effects , Male , Mice, Inbred C57BL
14.
J Eukaryot Microbiol ; 63(1): 138-41, 2016.
Article in English | MEDLINE | ID: mdl-26084401

ABSTRACT

Dynein heavy chains are motor proteins that comprise a large gene family found across eukaryotes. We have investigated this gene family in four ciliate species: Ichthyophthirius, Oxytricha, Paramecium, and Tetrahymena. Ciliates appear to encode more dynein heavy chain genes than most eukaryotes. Phylogenetic comparisons demonstrated that the last common ancestor of the ciliates that were examined expressed at least 14 types of dynein heavy chains with most of the expansion coming from the single-headed inner arm dyneins. Each of the dyneins most likely performed different functions within the cell.


Subject(s)
Ciliophora/genetics , Dyneins/chemistry , Dyneins/genetics , Evolution, Molecular , Amino Acid Sequence , Ciliophora/metabolism , Oxytricha/genetics , Oxytricha/metabolism , Paramecium/genetics , Paramecium/metabolism , Phylogeny , Tetrahymena/genetics , Tetrahymena/metabolism
15.
J Surg Res ; 203(1): 82-90, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27338538

ABSTRACT

BACKGROUND: Lung transplantation outcomes are among the least favorable, with most recipients eventually developing bronchiolitis obliterans syndrome (BOS) and subsequent graft failure. The presence of human leukocyte antigen (HLA)-DR has been implicated in the pathogenesis of BOS and may play a role in these poor outcomes. METHODS: Lung transplant donor and recipient data were retrospectively gathered from the United Network for Organ Sharing database from January 2006 to June 2013. Donor and recipient characteristics, proportion of recipients treated for first year rejection, and 5-y rates of survival and freedom from BOS were determined according to HLA-DR1, -DR7, -DR13, and -DR15 status in both donor and recipient. Each HLA-DR allele was stratified by donor-recipient pair positivity status. RESULTS: A total of 7402 lung transplant recipients met the inclusion and exclusion criteria. There were significant but small differences in donor and recipient characteristics for each HLA-DR group. The recipients in the D(-)R(+) pairing for HLA-DR13 and those in the D(+)R(-) pairing for HLA-DR15 had significantly higher rates of receiving treatment for rejection within the first year after transplant (P = 0.024 and P = 0.001, respectively). There were no differences in 5-y survival or freedom from BOS for any of the four HLA-DR alleles studied. CONCLUSIONS: There are higher rates of patients treated for rejection within the first year who are either negative for the HLA-DR15 allele but received a donor-positive lung or positive for the HLA-DR13 allele but received a donor-negative lung for that allele. However, these differences do not appear to affect long-term outcomes.


Subject(s)
Bronchiolitis Obliterans/immunology , Graft Rejection/immunology , HLA-DR Serological Subtypes/metabolism , Lung Transplantation , Postoperative Complications/immunology , Adult , Aged , Biomarkers/metabolism , Bronchiolitis Obliterans/etiology , Female , Humans , Logistic Models , Lung Transplantation/mortality , Male , Middle Aged , Outcome Assessment, Health Care , Retrospective Studies , Survival Analysis
16.
Semin Immunol ; 24(2): 131-5, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21925897

ABSTRACT

Lung transplantation is considered a definitive treatment for many lung diseases. However, rejection and other pathologic entities are major causes of morbidity and mortality for lung transplant recipients. Primary graft dysfunction (PGD) and obliterative bronchiolitis (OB) are the leading causes of early and late mortality, respectively. While the immune basis of PGD has not been clearly defined, evidence is emerging about roles for autoantibodies in this process. Similarly, the pathogenesis of OB has been linked recently to autoimmunity. This review will highlight the current understanding of autoantibodies in PGD and OB post lung transplantation.


Subject(s)
Autoantibodies/biosynthesis , Graft Rejection/immunology , Lung Transplantation/immunology , Primary Graft Dysfunction/immunology , Animals , Autoantibodies/immunology , Bronchiolitis Obliterans/immunology , Chronic Disease , Disease Models, Animal , Humans , Mice , Rats
17.
Am J Transplant ; 15(7): 1793-1804, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25773063

ABSTRACT

Lung transplant survival is limited by obliterative bronchiolitis (OB), but the mechanisms of OB development are unknown. Previous studies in a mouse model of orthotopic lung transplantation suggested a requirement for IL-17. We have used this orthotopic mouse model to investigate the source of IL-17A and the requirement for T cells producing IL-17A. The major sources of IL-17A were CD4(+) T cells and γδ T cells. Depletion of CD4(+) T cells led to a significantly decreased frequency and number of IL-17A(+) lymphocytes and was sufficient to prevent acute rejection and OB. However, mice with STAT3-deficient T cells, which are unable to differentiate into Th17 cells, rejected lung allografts and developed OB similar to control mice. The frequency of IL-17A(+) cells was not decreased in mice with STAT3-deficient T cells due mainly to the presence of IL-17A(+) γδ T cells. Deficiency of γδ T cells also did not affect the development of airway fibrosis. Our data suggest that CD4(+) T cells are required for OB development and expansion of IL-17A responses in the lung, while Th17 and γδ T cells are not absolutely required and may compensate for each other.


Subject(s)
Bronchiolitis Obliterans/immunology , CD4-Positive T-Lymphocytes/immunology , Graft Survival/immunology , Interleukin-17/immunology , Lung Transplantation , Th17 Cells/immunology , Animals , Bronchiolitis Obliterans/metabolism , Disease Models, Animal , Flow Cytometry , Interferon-gamma/metabolism , Lymphocyte Depletion , Mice , Mice, Inbred C57BL , Mice, Knockout , STAT3 Transcription Factor/physiology
18.
Am J Physiol Heart Circ Physiol ; 309(5): H719-27, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26116712

ABSTRACT

The abdominal aortic aneurysm (AAA) is a disease process that carries significant morbidity and mortality in the absence of early identification and treatment. While current management includes surveillance and surgical treatment of low- and high-risk aneurysms, respectively, our narrow understanding of the pathophysiology of AAAs limits our ability to more effectively manage and perhaps even prevent the occurrence of this highly morbid disease. Over the past couple of decades, there has been considerable interest in exploring the role of autoimmunity as an etiological component of AAA. This review covers the current literature pertaining to this immunological process, focusing on research that highlights the local and systemic immune components found in both human patients and murine models. A better understanding of the autoimmune mechanisms in the pathogenesis of AAAs can pave the way to novel and improved treatment strategies in this patient population.


Subject(s)
Aortic Aneurysm, Abdominal/immunology , Autoimmunity , Animals , Aortic Aneurysm, Abdominal/etiology , Humans
19.
Eur Respir J ; 45(5): 1393-402, 2015 May.
Article in English | MEDLINE | ID: mdl-25614165

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. IPF appears to be heterogeneous in pathobiology with ∼40% of IPF patients found to have elevated levels of circulating antibodies to the autoantigen type V collagen (col(V)). Following a targeted, precision medicine approach, we conducted a phase 1 study to test the safety and explore potential efficacy of IW001, a col(V) oral immunotherapeutic developed to treat antibody-positive IPF patients. We divided 30 antibody-positive IPF patients into three cohorts for daily dosing over a 24-week period. All patients completed treatment without serious adverse events, acute exacerbations or IPF-related hospitalisations. A decline in lung function occurred in the lowest-dose cohort that was comparable to that reported in placebo arms of published IPF trials. In contrast, the highest-dose cohort showed a trend toward stabilisation of forced vital capacity and matrix metalloproteinase 7, and a reduction in binding of C1q to anti-col(V) antibodies. IW001 may modulate the immune response to col(V) and may represent a new therapeutic for col(V)- reactive IPF patients.


Subject(s)
Collagen Type V/therapeutic use , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/therapy , Immunotherapy/methods , Administration, Oral , Aged , Biomarkers/blood , Cohort Studies , Complement C1q/metabolism , Female , Humans , Lung/immunology , Male , Matrix Metalloproteinase 7/blood , Middle Aged , Patient Safety , Respiratory Function Tests , Serum Albumin/metabolism , Vital Capacity/drug effects
20.
FASEB J ; 28(10): 4223-34, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24958208

ABSTRACT

The epithelial complement inhibitory proteins (CIPs) cluster of differentiation 46 and 55 (CD46 and CD55) regulate circulating immune complex-mediated complement activation in idiopathic pulmonary fibrosis (IPF). Our previous studies demonstrated that IL-17A mediates epithelial injury via transforming growth factor ß1 (TGF-ß1) and down-regulates CIPs. In the current study, we examined the mechanistic role of TGF-ß1 in complement activation-mediated airway epithelial injury in IPF pathogenesis. We observed lower epithelial CIP expression in IPF lungs compared to normal lungs, associated with elevated levels of complement component 3a and 5a (C3a and C5a), locally and systemically. In normal primary human small airway epithelial cells (SAECs) treated with TGF-ß1 (10 ng/ml), C3a, or C5a (100 nM), we observed loss of CIPs and increased poly(ADP-ribose) polymerase (PARP) activation [also observed with RNA interference (RNAi) of CD46/CD55]. TGF-ß1-mediated loss of CIPs and Snail induction [SNAI1; a transcriptional repressor of E-cadherin (E-CAD)] was blocked by inhibiting mitogen-activated protein kinase (p38MAPK; SB203580) and RNAi silencing of SNAI1. C3a- and C5a-mediated loss of CIPs was also blocked by p38MAPK inhibition. While C3a upregulated TGFb transcripts, both C3a and C5a down-regulated SMAD7 (negative regulator of TGF-ß), and whereas TGF-ß1 induced C3a/C5a receptor (C3aR/C5aR) expression, pharmacologic C3aR/C5aR inhibition protected against C3a-/C5a-mediated loss of CIPs. Taken together, our results suggest that epithelial injury in IPF can be collectively amplified as a result of TGF-ß1-induced loss of CIPs leading to complement activation that down-regulates CIPs and induces TGF-ß1 expression


Subject(s)
Complement Activation , Idiopathic Pulmonary Fibrosis/metabolism , Respiratory Mucosa/metabolism , Transforming Growth Factor beta1/metabolism , Adult , Aged , CD55 Antigens/genetics , CD55 Antigens/metabolism , Cells, Cultured , Female , Humans , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/pathology , Male , Membrane Cofactor Protein/genetics , Membrane Cofactor Protein/metabolism , Middle Aged , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Complement/genetics , Receptors, Complement/metabolism , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Smad7 Protein/genetics , Smad7 Protein/metabolism , Snail Family Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Transforming Growth Factor beta1/genetics , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL