Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2315310121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990944

ABSTRACT

Bacitracin is a macrocyclic peptide antibiotic that is widely used as a topical treatment for infections caused by gram-positive bacteria. Mechanistically, bacitracin targets bacteria by specifically binding to the phospholipid undecaprenyl pyrophosphate (C55PP), which plays a key role in the bacterial lipid II cycle. Recent crystallographic studies have shown that when bound to C55PP, bacitracin adopts a highly ordered amphipathic conformation. In doing so, all hydrophobic side chains align on one face of the bacitracin-C55PP complex, presumably interacting with the bacterial cell membrane. These insights led us to undertake structure-activity investigations into the individual contribution of the nonpolar amino acids found in bacitracin. To achieve this we designed, synthesized, and evaluated a series of bacitracin analogues, a number of which were found to exhibit significantly enhanced antibacterial activity against clinically relevant, drug-resistant pathogens. As for the natural product, these next-generation bacitracins were found to form stable complexes with C55PP. The structure-activity insights thus obtained serve to inform the design of C55PP-targeting antibiotics, a key and underexploited antibacterial strategy.


Subject(s)
Anti-Bacterial Agents , Bacitracin , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacitracin/pharmacology , Bacitracin/chemistry , Structure-Activity Relationship , Drug Resistance, Bacterial/drug effects , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/analogs & derivatives , Drug Design , Polyisoprenyl Phosphates/metabolism , Polyisoprenyl Phosphates/chemistry , Polyisoprenyl Phosphates/pharmacology
2.
Environ Microbiol ; 26(2): e16589, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356049

ABSTRACT

Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.


Subject(s)
Actinomycetales , Mammoths , Streptomyces , Animals , Phylogeny , Genomics , Streptomyces/genetics , Feces
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33443155

ABSTRACT

Gram-positive bacteria divide by forming a thick cross wall. How the thickness of this septal wall is controlled is unknown. In this type of bacteria, the key cell division protein FtsZ is anchored to the cell membrane by two proteins, FtsA and/or SepF. We have isolated SepF homologs from different bacterial species and found that they all polymerize into large protein rings with diameters varying from 19 to 44 nm. Interestingly, these values correlated well with the thickness of their septa. To test whether ring diameter determines septal thickness, we tried to construct different SepF chimeras with the purpose to manipulate the diameter of the SepF protein ring. This was indeed possible and confirmed that the conserved core domain of SepF regulates ring diameter. Importantly, when SepF chimeras with different diameters were expressed in the bacterial host Bacillus subtilis, the thickness of its septa changed accordingly. These results strongly support a model in which septal thickness is controlled by curved molecular clamps formed by SepF polymers attached to the leading edge of nascent septa. This also implies that the intrinsic shape of a protein polymer can function as a mold to shape the cell wall.


Subject(s)
Bacillus subtilis/physiology , Bacterial Proteins/metabolism , Cell Division , Cell Wall/metabolism , Polymerization
4.
Biochem Biophys Res Commun ; 645: 79-87, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36680940

ABSTRACT

Bacterial cytokinesis starts with the polymerization of the tubulin-like FtsZ, which forms the cell division scaffold. SepF aligns FtsZ polymers and also acts as a membrane anchor for the Z-ring. While in most bacteria cell division takes place at midcell, during sporulation of Streptomyces many septa are laid down almost simultaneously in multinucleoid aerial hyphae. The genomes of streptomycetes encode two additional SepF paralogs, SflA and SflB, which can interact with SepF. Here we show that the sporogenic aerial hyphae of sflA and sflB mutants of Streptomyces coelicolor frequently branch, a phenomenon never seen in the wild-type strain. The branching coincided with ectopic localization of DivIVA along the lateral wall of sporulating aerial hyphae. Constitutive expression of SflA and SflB largely inhibited hyphal growth, further correlating SflAB activity to that of DivIVA. SflAB localized in foci prior to and after the time of sporulation-specific cell division, while SepF co-localized with active septum synthesis. Foci of FtsZ and DivIVA frequently persisted between adjacent spores in spore chains of sflA and sflB mutants, at sites occupied by SflAB in wild-type cells. Taken together, our data show that SflA and SflB play an important role in the control of growth and cell division during Streptomyces development.


Subject(s)
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Cell Division , Cytokinesis , Streptomyces/metabolism , Spores, Bacterial/genetics , Spores, Bacterial/metabolism
5.
Appl Environ Microbiol ; 89(11): e0123923, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37902333

ABSTRACT

IMPORTANCE: Microorganisms that live on or inside plants can influence plant growth and health. Among the plant-associated bacteria, streptomycetes play an important role in defense against plant diseases, but the underlying mechanisms are not well understood. Here, we demonstrate that the plant hormones jasmonic acid (JA) and methyl jasmonate directly affect the life cycle of streptomycetes by modulating antibiotic synthesis and promoting faster development. Moreover, the plant hormones specifically stimulate the synthesis of the polyketide antibiotic actinorhodin in Streptomyces coelicolor. JA is then modified in the cell by amino acid conjugation, thereby quenching toxicity. Collectively, these results provide new insight into the impact of a key plant hormone on diverse phenotypic responses of streptomycetes.


Subject(s)
Amino Acids , Plant Growth Regulators , Anti-Bacterial Agents , Hormones
6.
Antonie Van Leeuwenhoek ; 116(1): 1-19, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36383329

ABSTRACT

The GTPase FtsZ forms the cell division scaffold in bacteria, which mediates the recruitment of the other components of the divisome. Streptomycetes undergo two different forms of cell division. Septa without detectable peptidoglycan divide the highly compartmentalised young hyphae during early vegetative growth, and cross-walls are formed that dissect the hyphae into long multinucleoid compartments in the substrate mycelium, while ladders of septa are formed in the aerial hyphae that lead to chains of uninucleoid spores. In a previous study, we analysed the phosphoproteome of Streptomyces coelicolor and showed that FtsZ is phosphorylated at Ser 317 and Ser389. Substituting Ser-Ser for either Glu-Glu (mimicking phosphorylation) or Ala-Ala (mimicking non-phosphorylation) hinted at changes in antibiotic production. Here we analyse development, colony morphology, spore resistance, and antibiotic production in FtsZ knockout mutants expressing FtsZ alleles mimicking Ser319 and Ser387 phosphorylation and non-phosphorylation: AA (no phosphorylation), AE, EA (mixed), and EE (double phosphorylation). The FtsZ-eGFP AE, EA and EE alleles were not able to form observable FtsZ-eGFP ladders when they were expressed in the S. coelicolor wild-type strain, whereas the AA allele could form apparently normal eGFP Z-ladders. The FtsZ mutant expressing the FtsZ EE or EA or AE alleles is able to sporulate indicating that the mutant alleles are able to form functional Z-rings leading to sporulation when the wild-type FtsZ gene is absent. The four mutants were pleiotropically affected in colony morphogenesis, antibiotic production, substrate mycelium differentiation and sporulation (sporulation timing and spore resistance) which may be an indirect result of the effect in sporulation Z-ladder formation. Each mutant showed a distinctive phenotype in antibiotic production, single colony morphology, and sporulation (sporulation timing and spore resistance) indicating that the different FtsZ phosphomimetic alleles led to different phenotypes. Taken together, our data provide evidence for a pleiotropic effect of FtsZ phosphorylation in colony morphology, antibiotic production, and sporulation.


Subject(s)
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genetics , Streptomyces/genetics , Anti-Bacterial Agents , Spores, Bacterial/chemistry , Cell Wall/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/analysis
7.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Article in English | MEDLINE | ID: mdl-36748598

ABSTRACT

An actinobacterial strain, CMB-FB, was isolated from surface-sterilized root nodules of a Coriaria intermedia plant growing along Halsema Highway in the province of Benguet (Luzon, Philippines). The 16S rRNA gene sequence of CMB-FB showed high sequence similarity to those of the type strains of Streptomyces rishiriensis (99.4 %), Streptomyces humidus (99.1 %), Streptomyces cacaoi subsp. asoensis (99.0 %), and Streptomyces phaeofaciens (98.6 %). The major menaquinones of CMB-FB were composed of MK-9(H4), MK-9(H6) and MK-9(H8), and there was a minor contribution of MK-9(H10). The polar lipid profile consisted of phosphatidylethanolamine, unidentified aminolipids and phospholipids, a glycophospholipid and four unidentified lipids. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The results of physiological analysis indicated that CMB-FB was mesophilic. The results of phylogenetic, genome-genome distance calculation and average nucleotide identity analysis indicated that the isolated strain represents the type strain of a novel species. On the basis of these results, strain CMB-FB (=DSM 112754T=LMG 32457T) is proposed as the type strain of the novel species Streptomyces coriariae sp. nov.


Subject(s)
Fatty Acids , Streptomyces , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , Philippines , Phospholipids/chemistry , Vitamin K 2/chemistry
8.
Microsc Microanal ; 26(5): 978-988, 2020 10.
Article in English | MEDLINE | ID: mdl-32878652

ABSTRACT

Symmetry is omnipresent in nature and we encounter symmetry routinely in our everyday life. It is also common on the microscopic level, where symmetry is often key to the proper function of core biological processes. The human brain is exquisitely well suited to recognize such symmetrical features with ease. In contrast, computational recognition of such patterns in images is still surprisingly challenging. In this paper we describe a mathematical approach to identifying smaller local symmetrical structures within larger images. Our algorithm attributes a local symmetry score to each image pixel, which subsequently allows the identification of the symmetrical centers of an object. Though there are already many methods available to detect symmetry in images, to the best of our knowledge, our algorithm is the first that is easily applicable in ImageJ/FIJI. We have created an interactive plugin in FIJI that allows the detection and thresholding of local symmetry values. The plugin combines the different reflection symmetry axis of a square to get a good coverage of reflection symmetry in all directions. To demonstrate the plugins potential, we analyzed images of bacterial chemoreceptor arrays and intracellular vesicle trafficking events, which are two prominent examples of biological systems with symmetrical patterns.


Subject(s)
Image Processing, Computer-Assisted/methods , Pattern Recognition, Automated , Physical Phenomena , Algorithms , Chemotaxis , Forensic Anthropology , Humans , Machine Learning
9.
PLoS Pathog ; 13(7): e1006526, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28742152

ABSTRACT

Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections.


Subject(s)
Cell Wall/metabolism , Enterococcus faecalis/cytology , Enterococcus faecalis/pathogenicity , Gram-Positive Bacterial Infections/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Division , Cell Wall/genetics , Enterococcus faecalis/enzymology , Enterococcus faecalis/genetics , Humans , N-Acetylmuramoyl-L-alanine Amidase/genetics , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Virulence , Zebrafish/microbiology
10.
Int J Syst Evol Microbiol ; 69(4): 899-908, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30625109

ABSTRACT

A polyphasic study was designed to establish the taxonomic status of a Streptomyces strain isolated from soil from the QinLing Mountains, Shaanxi Province, China, and found to be the source of known and new specialized metabolites. Strain MBT76T was found to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces. The strain formed a distinct branch in the Streptomyces16S rRNA gene tree and was closely related to the type strains of Streptomyces hiroshimensis and Streptomycesmobaraerensis. Multi-locus sequence analyses based on five conserved house-keeping gene alleles showed that strain MBT76T is closely related to the type strain of S. hiroshimensis, as was the case in analysis of a family of conserved proteins. The organism was also distinguished from S. hiroshimensis using cultural and phenotypic features. Average nucleotide identity and digital DNA-DNA hybridization values between the genomes of strain MBT76T and S. hiroshimensis DSM 40037T were 88.96 and 28.4±2.3%, respectively, which is in line with their assignment to different species. On the basis of this wealth of data it is proposed that strain MBT76T (=DSM 106196T=NCCB 100637T), be classified as a new species, Streptomycesroseifaciens sp. nov.


Subject(s)
Phylogeny , Soil Microbiology , Streptomyces/classification , Bacterial Typing Techniques , Base Composition , Biological Products , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , Multilocus Sequence Typing , Nucleic Acid Hybridization , Phospholipids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Streptomyces/isolation & purification , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
11.
Genes Dev ; 25(1): 89-99, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21205868

ABSTRACT

In bacteria that divide by binary fission, cell division starts with the polymerization of the tubulin homolog FtsZ at mid-cell to form a cell division scaffold (the Z ring), followed by recruitment of the other divisome components. The current view of bacterial cell division control starts from the principle of negative checkpoints that prevent incorrect Z-ring positioning. Here we provide evidence of positive control of cell division during sporulation of Streptomyces, via the direct recruitment of FtsZ by the membrane-associated divisome component SsgB. In vitro studies demonstrated that SsgB promotes the polymerization of FtsZ. The interactions are shown in vivo by time-lapse imaging and Förster resonance energy transfer and fluorescence lifetime imaging microscopy (FRET-FLIM), and are corroborated independently via two-hybrid studies. As determined by fluorescence recovery after photobleaching (FRAP), the turnover of FtsZ protofilaments increased strongly at the time of Z-ring formation. The surprising positive control of Z-ring formation by SsgB implies the evolution of an entirely new way of Z-ring control, which may be explained by the absence of a mid-cell reference point in the long multinucleoid hyphae. In turn, the localization of SsgB is mediated through the orthologous SsgA, and premature expression of the latter is sufficient to directly activate multiple Z-ring formation and hyperdivision at early stages of the Streptomyces cell cycle.


Subject(s)
Bacterial Proteins/metabolism , Cytoskeletal Proteins/metabolism , Streptomyces coelicolor/cytology , Streptomyces coelicolor/metabolism , Bacterial Proteins/ultrastructure , Cell Division/physiology , Cytoskeletal Proteins/ultrastructure , Polymerization , Protein Transport
12.
Antonie Van Leeuwenhoek ; 111(5): 679-690, 2018 May.
Article in English | MEDLINE | ID: mdl-29335919

ABSTRACT

Many actinobacteria live in close association with eukaryotes such as fungi, insects, animals and plants. Plant-associated actinobacteria display (endo)symbiotic, saprophytic or pathogenic life styles, and can make up a substantial part of the endophytic community. Here, we characterised endophytic actinobacteria isolated from root tissue of Arabidopsis thaliana (Arabidopsis) plants grown in soil from a natural ecosystem. Many of these actinobacteria belong to the family of Streptomycetaceae with Streptomyces olivochromogenes and Streptomyces clavifer as well represented species. When seeds of Arabidopsis were inoculated with spores of Streptomyces strain coa1, which shows high similarity to S. olivochromogenes, roots were colonised intercellularly and, unexpectedly, also intracellularly. Subsequent exposure of endophytic isolates to plant hormones typically found in root and shoot tissues of Arabidopsis led to altered antibiotic production against Escherichia coli and Bacillus subtilis. Taken together, our work reveals remarkable colonization patterns of endophytic streptomycetes with specific traits that may allow a competitive advantage inside root tissue.


Subject(s)
Actinobacteria/physiology , Anti-Infective Agents/pharmacology , Arabidopsis/microbiology , Endophytes/metabolism , Plant Growth Regulators/physiology , Plant Roots/microbiology , Actinobacteria/classification , Actinobacteria/growth & development , Anti-Infective Agents/metabolism , Arabidopsis/metabolism , Bacteria/drug effects , DNA, Bacterial/genetics , Endophytes/classification , Endophytes/growth & development , Endophytes/isolation & purification , Microbial Sensitivity Tests , Plant Roots/metabolism , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Streptomyces/classification , Streptomyces/growth & development , Streptomyces/metabolism , Symbiosis/physiology
13.
Antonie Van Leeuwenhoek ; 111(2): 171-182, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28916864

ABSTRACT

Streptomycetes are filamentous bacteria that produce a plethora of bioactive natural products and industrial enzymes. Their mycelial lifestyle typically results in high heterogeneity in bioreactors, with morphologies ranging from fragments and open mycelial mats to dense pellets. There is a strong correlation between morphology and production in submerged cultures, with small and open mycelia favouring enzyme production, while most antibiotics are produced mainly in pellets. Here we describe SParticle, a Streptomyces Particle analysis method that combines whole slide imaging with automated image analysis to characterize the morphology of submerged grown Streptomyces cultures. SParticle allows the analysis of over a thousand particles per hour, offering a high throughput method for the imaging and statistical analysis of mycelial morphologies. The software is available as a plugin for the open source software ImageJ and allows users to create custom filters for other microbes. Therefore, SParticle is a widely applicable tool for the analysis of filamentous microorganisms in submerged cultures.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Molecular Imaging/methods , Streptomyces/cytology , Automation , Image Processing, Computer-Assisted/methods , Microscopy , Streptomyces/metabolism
14.
Nat Methods ; 11(3): 281-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24441936

ABSTRACT

Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.


Subject(s)
Image Interpretation, Computer-Assisted , Microscopy, Fluorescence/methods , Image Interpretation, Computer-Assisted/standards , Microscopy, Fluorescence/standards
15.
Antonie Van Leeuwenhoek ; 110(12): 1705-1717, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28770445

ABSTRACT

Two actinobacterial strains, ADI 127-17T and GBA 129-24, isolated from marine sponges Antho dichotoma and Geodia barretti, respectively, collected at the Trondheim fjord in Norway, were the subjects of a polyphasic study. According to their 16S rRNA gene sequences, the new isolates were preliminarily classified as belonging to the genus Actinoalloteichus. Both strains formed a distinct branch, closely related to the type strains of Actinoalloteichus hoggarensis and Actinoalloteichus hymeniacidonis, within the evolutionary radiation of the genus Actinoalloteichus in the 16S rRNA gene-based phylogenetic tree. Isolates ADI 127-17T and GBA 129-24 exhibited morphological, chemotaxonomic and genotypic features distinguishable from their close phylogenetic neighbours. Digital DNA: DNA hybridization and ANI values between strains ADI 127-17T and GBA 129-24 were 97.6 and 99.7%, respectively, whereas the corresponding values between both tested strains and type strains of their closely related phylogenetic neighbours, A. hoggarensis and A. hymeniacidonis, were well below the threshold for delineation of prokaryotic species. Therefore, strains ADI 127-17T (= DSM 46855T) and GBA 129-24 (= DSM 46856) are concluded to represent a novel species of the genus Actinoalloteichus for which the name of Actinoalloteichus fjordicus sp. nov. (type strain ADI 127-17T = DSM 46855T = CECT 9355T) is proposed. The complete genome sequences of the new strains were obtained and compared to that of A. hymeniacidonis DSM 45092T and A. hoggarensis DSM 45943T to unravel unique genome features and biosynthetic potential of the new isolates.


Subject(s)
Actinobacteria/classification , Porifera/microbiology , Actinobacteria/chemistry , Actinobacteria/genetics , Actinobacteria/isolation & purification , Animals , Bacterial Typing Techniques , Computational Biology/methods , Genes, Bacterial , Genome, Bacterial , Genomics/methods , High-Throughput Nucleotide Sequencing , Metabolomics/methods , Molecular Sequence Annotation , Multigene Family , Phenotype , Phylogeny , Secondary Metabolism/genetics
16.
Antonie Van Leeuwenhoek ; 106(2): 365-80, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24958203

ABSTRACT

Actinomycetes are antibiotic-producing filamentous bacteria that have a mycelial life style. The members of the three genera classified in the family Streptomycetaceae, namely Kitasatospora, Streptacidiphilus and Streptomyces, are difficult to distinguish using phenotypic properties. Here we present biochemical and genetic evidence that helps underpin the case for the continued recognition of the genus Kitasatospora and for the delineation of additional Kitasatospora species. Two novel Kitasatospora strains, isolates MBT63 and MBT66, and their genome sequences are presented. The cell wall of the Kitasatospora strains contain a mixture of meso-and LL-diaminopimelic acid (A2pm), whereby a single DapF surprisingly suffices to incorporate both components into the Kitasatospora cell wall. The availability of two new Kitasatospora genome sequences in addition to that of the previously sequenced Kitasatospora setae KM-6054(T) allows better phylogenetic comparison between kitasatosporae and streptomycetes. This showed that the developmental regulator BldB and the actin-like protein Mbl are absent from kitasatosporae, while the cell division activator SsgA and its transcriptional activator SsgR have been lost from some Kitasatospora species, strongly suggesting that Kitasatospora have evolved different ways to control specific steps in their development. We also show that the tetracycline-producing strain "Streptomyces viridifaciens" DSM 40239 not only has properties consistent with its classification in the genus Kitasatospora but also merits species status within this taxon.


Subject(s)
Evolution, Molecular , Genes, Developmental , Streptomycetaceae/genetics , Bacterial Proteins/genetics , Cell Wall/chemistry , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Diaminopimelic Acid/analysis , Gene Expression Regulation, Bacterial , Genome, Bacterial , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Streptomycetaceae/classification , Streptomycetaceae/isolation & purification
17.
Commun Biol ; 7(1): 725, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867087

ABSTRACT

The rising use of plastic results in an appalling amount of waste which is scattered into the environment. One of these plastics is PET which is mainly used for bottles. We have identified and characterized an esterase from Streptomyces, annotated as LipA, which can efficiently degrade the PET-derived oligomer BHET. The Streptomyces coelicolor ScLipA enzyme exhibits varying sequence similarity to several BHETase/PETase enzymes, including IsPETase, TfCut2, LCC, PET40 and PET46. Of 96 Streptomyces strains, 18% were able to degrade BHET via one of three variants of LipA, named ScLipA, S2LipA and S92LipA. SclipA was deleted from S. coelicolor resulting in reduced BHET degradation. Overexpression of all LipA variants significantly enhanced BHET degradation. All variants were expressed in E. coli for purification and biochemical analysis. The optimum conditions were determined as pH 7 and 25 °C for all variants. The activity on BHET and amorphous PET film was investigated. S2LipA efficiently degraded BHET and caused roughening and indents on the surface of PET films, comparable to the activity of previously described TfCut2 under the same conditions. The abundance of the S2LipA variant in Streptomyces suggests an environmental advantage towards the degradation of more polar substrates including these polluting plastics.


Subject(s)
Streptomyces , Streptomyces/enzymology , Streptomyces/genetics , Soil Microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Biodegradation, Environmental , Streptomyces coelicolor/enzymology , Streptomyces coelicolor/genetics , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Polyethylene Terephthalates/metabolism
18.
Environ Int ; 188: 108723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744045

ABSTRACT

Nanoplastics can cause severe malformations in chicken embryos. To improve our understanding of the toxicity of nanoplastics to embryos, we have studied their biodistribution in living chicken embryos. We injected the embryos in the vitelline vein at stages 18-19. We injected polystyrene nanoparticles (PS-NPs) tagged with europium- or fluorescence. Their biodistribution was tracked using inductively-coupled plasma mass spectrometry on tissue lysates, paraffin histology, and vibratome sections analysed by machine learning algorithms. PS-NPs were found at high levels in the heart, liver and kidneys. Furthermore, PS-NPs crossed the endocardium of the heart at sites of epithelial-mesenchymal transformation; they also crossed the liver endothelium. Finally, we detected PS-NPs in the allantoic fluid, consistent with their being excreted by the kidneys. Our study shows the power of the chicken embryo model for analysing the biodistribution of nanoplastics in embryos. Such experiments are difficult or impossible in mammalian embryos. These findings are a major advance in our understanding of the biodistribution and tissue-specific accumulation of PS-NPs in developing animals.


Subject(s)
Nanoparticles , Polystyrenes , Animals , Polystyrenes/pharmacokinetics , Chick Embryo , Tissue Distribution , Kidney/metabolism , Liver/metabolism , Mass Spectrometry
19.
ACS Chem Biol ; 19(5): 1106-1115, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38602492

ABSTRACT

The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects , Humans , Host Specificity , Drug Discovery , Lipopeptides/pharmacology , Lipopeptides/chemistry , Peptides
20.
Sci Transl Med ; 16(759): eabo4736, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39110780

ABSTRACT

Gram-positive bacterial infections present a major clinical challenge, with methicillin- and vancomycin-resistant strains continuing to be a cause for concern. In recent years, semisynthetic vancomycin derivatives have been developed to overcome this problem as exemplified by the clinically used telavancin, which exhibits increased antibacterial potency but has also raised toxicity concerns. Thus, glycopeptide antibiotics with enhanced antibacterial activities and improved safety profiles are still necessary. We describe the development of a class of highly potent semisynthetic glycopeptide antibiotics, the guanidino lipoglycopeptides, which contain a positively charged guanidino moiety bearing a variable lipid group. These glycopeptides exhibited enhanced in vitro activity against a panel of Gram-positive bacteria including clinically relevant methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant strains, showed minimal toxicity toward eukaryotic cells, and had a low propensity for resistance selection. Mechanistically, guanidino lipoglycopeptides engaged with bacterial cell wall precursor lipid II with a higher binding affinity than vancomycin. Binding to both wild-type d-Ala-d-Ala lipid II and the vancomycin-resistant d-Ala-d-Lac variant was confirmed, providing insight into the enhanced activity of guanidino lipoglycopeptides against vancomycin-resistant isolates. The in vivo efficacy of guanidino lipoglycopeptide EVG7 was evaluated in a S. aureus murine thigh infection model and a 7-day sepsis survival study, both of which demonstrated superiority to vancomycin. Moreover, the minimal to mild kidney effects at supratherapeutic doses of EVG7 indicate an improved therapeutic safety profile compared with vancomycin. These findings position guanidino lipoglycopeptides as candidates for further development as antibacterial agents for the treatment of clinically relevant multidrug-resistant Gram-positive infections.


Subject(s)
Anti-Bacterial Agents , Lipoglycopeptides , Microbial Sensitivity Tests , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Lipoglycopeptides/pharmacology , Lipoglycopeptides/therapeutic use , Mice , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Glycopeptides/pharmacology , Glycopeptides/chemistry , Glycopeptides/therapeutic use , Gram-Positive Bacteria/drug effects , Female
SELECTION OF CITATIONS
SEARCH DETAIL