Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Circ Res ; 125(9): 834-846, 2019 10 11.
Article in English | MEDLINE | ID: mdl-31495264

ABSTRACT

RATIONALE: Pathogenic variations in the lamin gene (LMNA) cause familial dilated cardiomyopathy (DCM). LMNA insufficiency caused by LMNA pathogenic variants is believed to be the basic mechanism underpinning LMNA-related DCM. OBJECTIVE: To assess whether silencing of cardiac Lmna causes DCM and investigate the role of Yin Yang 1 (Yy1) in suppressing Lmna DCM. METHODS AND RESULTS: We developed a Lmna DCM mouse model induced by cardiac-specific Lmna short hairpin RNA. Silencing of cardiac Lmna induced DCM with associated cardiac fibrosis and inflammation. We demonstrated that upregulation of Yy1 suppressed Lmna DCM and cardiac fibrosis by inducing Bmp7 expression and preventing upregulation of Ctgf. Knockdown of upregulated Bmp7 attenuated the suppressive effect of Yy1 on DCM and cardiac fibrosis. However, upregulation of Bmp7 alone was not sufficient to suppress DCM and cardiac fibrosis. Importantly, upregulation of Bmp7 together with Ctgf silencing significantly suppressed DCM and cardiac fibrosis. Mechanistically, upregulation of Yy1 regulated Bmp7 and Ctgf reporter activities and modulated Bmp7 and Ctgf gene expression in cardiomyocytes. Downregulation of Ctgf inhibited TGF-ß (transforming growth factor-ß)/Smad signaling in DCM hearts. Regulation of both Bmp7 and Ctgf further suppressed TGFß/Smad signaling. In addition, co-modulation of Bmp7 and Ctgf reduced CD3+ T cell numbers in DCM hearts. CONCLUSIONS: Our findings demonstrate that upregulation of Yy1 or co-modulation of Bmp7 and Ctgf offer novel therapeutic strategies for the treatment of DCM caused by LMNA insufficiency.


Subject(s)
Bone Morphogenetic Protein 7/biosynthesis , Cardiomyopathies/metabolism , Cardiomyopathies/prevention & control , Connective Tissue Growth Factor/biosynthesis , YY1 Transcription Factor/biosynthesis , Animals , Bone Morphogenetic Protein 7/genetics , Cardiomyopathies/genetics , Connective Tissue Growth Factor/genetics , Endothelium, Vascular/metabolism , Fibrosis/genetics , Fibrosis/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , YY1 Transcription Factor/genetics
2.
Sci Rep ; 9(1): 16330, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31705051

ABSTRACT

Truncating variants in TTN (TTNtv), coding for the largest structural protein in the sarcomere, contribute to the largest portion of familial and ambulatory dilated cardiomyopathy (DCM). TTN haploinsufficiency caused by TTNtv is suggested as the disease mechanism. However, it is unclear whether TTN insufficiency causes DCM. Moreover, it is unknown whether modulation of downstream pathways serves as a therapeutic strategy for DCM caused by TTN insufficiency. Here, we show that reduction of cardiac Ttn expression by adeno-associated virus mediated shRNA (Ttn shRNA) generated DCM in mouse, demonstrating impaired cardiac performance, enlarged left ventricle (LV) and reduced LV wall thickness. A screen of 10 dysregulated and selected genes identified that Yin Yang 1 (Yy1) significantly suppressed DCM caused by Ttn shRNA. Gene profiling by RNAseq showed Yy1 modulated cell growth related genes. Ttn insufficiency activated cardiomyocyte cell cycle reentry by upregulating of Ccnd1 and Ccnd2. Cardiomyocytes activated by Ttn insufficiency did not advance to S phase by EdU incorporation assay. Yy1 promoted cardiomyocyte cell cycle by further enhancing Ccnd1 and Ccnd2 and increasing DNA replication without undergoing cell division. Importantly, upregulation of Ccnd1 and Ccnd2 suppressed DCM caused by Ttn insufficiency. Our findings demonstrate that DCM caused by Ttn insufficiency can be treated by therapeutically promoting cardiac cell cycle.


Subject(s)
Cardiomyopathy, Dilated/genetics , Protein Kinases/genetics , Up-Regulation , YY1 Transcription Factor/genetics , Cardiomyopathy, Dilated/pathology , Cell Cycle/genetics , HEK293 Cells , Humans , Myocytes, Cardiac/pathology
SELECTION OF CITATIONS
SEARCH DETAIL