Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Methods Mol Biol ; 2842: 267-287, 2024.
Article in English | MEDLINE | ID: mdl-39012601

ABSTRACT

Genome editing tools, particularly the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems (e.g., CRISPR/Cas9), and their repurposing into epigenetic editing platforms, offer enormous potential as safe and customizable therapies for cancer. Specifically, various transcriptional abnormalities in human malignancies, such as silencing of tumor suppressors and ectopic re-expression of oncogenes, have been successfully targeted with virtually no off-target effects using CRISPR activation and repression systems. In these systems, the nuclease-deactivated Cas9 protein (dCas9) is fused to one or more domains inducing selective activation or repression of the targeted genes. Despite these advances, the efficient in vivo delivery of these molecules into the target cancer cells represents a critical barrier to accomplishing translation into a clinical therapy setting for cancer. Major obstacles include the large size of dCas9 fusion proteins, the necessity of multimodal delivery of protein and gRNAs, and the potential of these formulations to elicit detrimental immune responses.In this context, viral methods for delivering CRISPR face several limitations, such as the packaging capacity of the viral genome, the potential for integration of the nucleic acids into the host cells genome, and immunogenicity of viral proteins, posing serious safety concerns. The rapid development of mRNA vaccines in response to the COVID-19 pandemic has rekindled interest in mRNA-based approaches for CRISPR/dCas9 delivery. Simultaneously, due to their high loading capacity, scalability, customizable surface modification for cell targeting, and low immunogenicity, lipid nanoparticles (LNPs) have been widely explored as nonviral vectors. In this chapter, we first describe the design of optimized dCas9-effector mRNAs and gRNAs for epigenetic editing. We outline formulations of LNPs suitable for dCas9 mRNA delivery. Additionally, we provide a protocol for the co-encapsulation of the dCas9-effector mRNAs and gRNA into these LNPs, along with detailed methods for delivering these formulations to both cell lines (in vitro) and mouse models of breast cancer (in vivo).


Subject(s)
CRISPR-Cas Systems , Gene Editing , Nanoparticles , Neoplasms , Gene Editing/methods , Humans , Nanoparticles/chemistry , Animals , Neoplasms/genetics , Neoplasms/therapy , Epigenesis, Genetic , Mice , RNA, Guide, CRISPR-Cas Systems/genetics , Liposomes/chemistry , Cell Line, Tumor , Lipids/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Genetic Therapy/methods , Gene Transfer Techniques
2.
Clin Epigenetics ; 15(1): 73, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120619

ABSTRACT

BACKGROUND: Epigenetic silencing of tumor suppressor genes (TSGs) is a key feature of oncogenesis in hepatocellular carcinoma (HCC). Liver-targeted delivery of CRISPR-activation (CRISPRa) systems makes it possible to exploit chromatin plasticity, by reprogramming transcriptional dysregulation. RESULTS: Using The Cancer Genome Atlas HCC data, we identify 12 putative TSGs with negative associations between promoter DNA methylation and transcript abundance, with limited genetic alterations. All HCC samples harbor at least one silenced TSG, suggesting that combining a specific panel of genomic targets could maximize efficacy, and potentially improve outcomes as a personalized treatment strategy for HCC patients. Unlike epigenetic modifying drugs lacking locus selectivity, CRISPRa systems enable potent and precise reactivation of at least 4 TSGs tailored to representative HCC lines. Concerted reactivation of HHIP, MT1M, PZP, and TTC36 in Hep3B cells inhibits multiple facets of HCC pathogenesis, such as cell viability, proliferation, and migration. CONCLUSIONS: By combining multiple effector domains, we demonstrate the utility of a CRISPRa toolbox of epigenetic effectors and gRNAs for patient-specific treatment of aggressive HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Methylation , Epigenesis, Genetic , Genes, Tumor Suppressor , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
3.
Cytokine ; 58(3): 415-23, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22484241

ABSTRACT

The anti-inflammatory actions of IL-4 in activated human monocytes may reflect transcriptional regulation of genes involved in TLR signaling pathways. Tailored gene arrays were conducted to profile the expression of 84 genes central to TLR-mediated signal transduction in human monocytes treated with the TLR4 ligand, LPS, with or without IL-4. In the first 3h, IL-4 down-regulated mRNA levels of LPS-induced inflammatory cytokines and chemokines, without altering mRNA levels of TLRs, TLR-related signaling molecules or multiple transcription factors. The down-regulation of inflammatory genes by IL-4 was preceded by an early up-regulation of IL-10 mRNA and protein and mRNA for receptor-interacting serine-threonine kinase 2 (RIPK2), the TLR homolog, RP105, and c-Maf, a transcription factor required for IL-10 gene expression. However, IL-4 still suppressed LPS-induced TNFα production in bone-marrow derived macrophages from IL10(-/-) mice, and in the presence of a neutralizing antibody to IL-10 in human monocytes. The up-regulation of RIPK2 and RP105 mRNA by IL-4 occurred independently of IL-10. IL-4 maintained the ability to suppress LPS-induced TNFα and enhance IL-10 production in the presence of RIPK2 kinase inhibitors. Further, IL-4 failed to up-regulate expression of RP105 at the cell surface. In conclusion, the anti-inflammatory actions of IL-4 occur independently of IL-10, RP105, and the kinase activity of RIPK2.


Subject(s)
Antigens, CD/physiology , Inflammation/prevention & control , Interleukin-10/physiology , Interleukin-4/physiology , Monocytes/physiology , Receptor-Interacting Protein Serine-Threonine Kinase 2/physiology , Animals , Base Sequence , DNA Primers , Flow Cytometry , Humans , Interleukin-10/genetics , Mice , Real-Time Polymerase Chain Reaction
4.
Nat Commun ; 12(1): 1920, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33772001

ABSTRACT

Adipogenesis associated Mth938 domain containing (AAMDC) represents an uncharacterized oncogene amplified in aggressive estrogen receptor-positive breast cancers. We uncover that AAMDC regulates the expression of several metabolic enzymes involved in the one-carbon folate and methionine cycles, and lipid metabolism. We show that AAMDC controls PI3K-AKT-mTOR signaling, regulating the translation of ATF4 and MYC and modulating the transcriptional activity of AAMDC-dependent promoters. High AAMDC expression is associated with sensitization to dactolisib and everolimus, and these PI3K-mTOR inhibitors exhibit synergistic interactions with anti-estrogens in IntClust2 models. Ectopic AAMDC expression is sufficient to activate AKT signaling, resulting in estrogen-independent tumor growth. Thus, AAMDC-overexpressing tumors may be sensitive to PI3K-mTORC1 blockers in combination with anti-estrogens. Lastly, we provide evidence that AAMDC can interact with the RabGTPase-activating protein RabGAP1L, and that AAMDC, RabGAP1L, and Rab7a colocalize in endolysosomes. The discovery of the RabGAP1L-AAMDC assembly platform provides insights for the design of selective blockers to target malignancies having the AAMDC amplification.


Subject(s)
Breast Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , Cell Cycle Proteins/genetics , Everolimus/pharmacology , Female , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Imidazoles/pharmacology , Nerve Tissue Proteins/metabolism , Oncogenes/genetics , Protein Binding , Quinolines/pharmacology , Receptors, Estrogen/metabolism , Signal Transduction/drug effects
5.
Immunology ; 131(1): 118-27, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20406299

ABSTRACT

While it is known that the anti-inflammatory effects of interleukin (IL)-4 require new protein synthesis, the exact mechanisms by which IL-4 suppresses the production of pro-inflammatory cytokines by human monocytes and macrophages is unclear. IL-4 rapidly induced suppressor of cytokine signalling-1 (SOCS1) mRNA and protein, which peaked at 60 min, much earlier than lipopolysaccharide (LPS)-induced SOCS1 mRNA and protein which were consistently maximal 4 hr post-exposure. SOCS1 is a molecule generally considered to be induced for negative feedback of inflammatory processes. We investigated whether the early induction of SOCS1 by IL-4 was responsible for the suppression of LPS-induced tumour necrosis factor (TNF)-alpha production by IL-4. IL-4 suppressed LPS-induced TNF-alpha in freshly isolated monocytes at the level of transcription but acted by a different, possibly translational, mechanism in monocytes cultured overnight in macrophage colony-stimulating factor (M-CSF). Despite different modes of regulation by IL-4, the kinetics and magnitude of induction of SOCS1 mRNA and protein by IL-4 in the two cell types were identical. There was no significant difference in the suppression by IL-4 of LPS-induced TNF-alpha production by bone-marrow derived macrophages from wild-type mice, Ifngamma(-/-) mice and mice lacking SOCS1 (Socs1(-/-)Ifngamma(-/-)). These data suggest that SOCS1 is not involved in the suppression of LPS-induced TNF-alpha production by IL-4.


Subject(s)
Anti-Inflammatory Agents , Interleukin-4 , Monocytes , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Humans , Interferon-gamma/pharmacology , Interleukin-4/metabolism , Interleukin-4/pharmacology , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/drug effects , Suppressor of Cytokine Signaling Proteins/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
J Immunol ; 181(11): 8018-26, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-19017994

ABSTRACT

SOCS1 can regulate TLR-mediated signal transduction, yet mechanistic studies in murine macrophages have been confusing and contradictory. This study has used an adenoviral transfection system to determine the role of SOCS1 in the regulation of TNF-alpha production by activated human monocytes. Monocytes were infected with AdV-SOCS1 or with an empty vector control, AdV-GFP, for 24 h before activation with the TLR4 ligand, LPS. SOCS1 did not regulate TNF-alpha mRNA or protein production within the first two hours of TLR4 activation. However, SOCS1 suppressed the sustained production of TNF-alpha by primary human monocytes and synovial fluid macrophages ex vivo. In addition, SOCS1 regulated the production of IL-6, but not IL-10, by monocytes. Analysis of the early signaling pathway downstream of TLR4 demonstrated that SOCS1 had no regulatory effect on the activation or on the DNA binding capacity of NFkappaB. The late effects of LPS are mediated in part through the MyD88-independent pathway activating IRF3 and initiating the production of IFN-beta. In response to adenoviral infection and before LPS exposure, monocytes expressed enhanced levels of IFN-beta and Myxovirus A mRNA, an anti-viral molecule characterizing IFN-beta activity. These two genes were reduced in AdV-SOCS1-infected cells. Further, SOCS1 regulated IFN-dependent pathways in LPS-activated cells as evidenced by reduced IFN-beta production and STAT1 phosphorylation. Using AdV-infection to dissect SOCS1 control of IFN-dependent pathways, this study suggests that SOCS1-regulation of the IFN-dependent component of the LPS-induced TLR4 signaling pathway may contribute to the down-regulation of inflammatory cytokine production by AdV-SOCS1-infected human monocytes.


Subject(s)
Interferon-beta/immunology , Macrophage Activation/immunology , Macrophages/immunology , Monocytes/immunology , NF-kappa B/immunology , Signal Transduction/immunology , Suppressor of Cytokine Signaling Proteins/immunology , Toll-Like Receptor 4/immunology , Adenoviridae , Animals , Cell Line , Humans , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon-beta/genetics , Interferon-beta/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/metabolism , Mice , Monocytes/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Orthomyxoviridae/immunology , Orthomyxoviridae/metabolism , RNA, Viral/immunology , RNA, Viral/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Synovial Fluid/immunology , Synovial Fluid/metabolism , Time Factors , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
7.
Cancers (Basel) ; 12(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973201

ABSTRACT

The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.

SELECTION OF CITATIONS
SEARCH DETAIL