Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Nanobiotechnology ; 21(1): 258, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37550685

ABSTRACT

The development of osteoarthritis (OA) correlates with the expansion of senescent cells in cartilage, which contributes to an inflammatory microenvironment that accelerates matrix degradation and hampers cartilage generation. To address OA, we synthesized small copper sulfide nanoparticles functionalized with anti-beta-2-microglobulin antibodies (B2M-CuS NPs) that catalyze the formation of toxic •OH from H2O2 via peroxidase-like activity. These B2M-CuS NPs are specifically targeted to induce apoptosis in senescent chondrocytes while showing no toxicity toward normal chondrocytes. Furthermore, B2M-CuS NPs enhance the chondrogenesis of normal chondrocytes. Thus, B2M-CuS NPs can effectively treat OA by clearing senescent chondrocytes and promoting cartilage regeneration after intra-articular injection into the knee joints of surgery-induced OA mice. This study uses smart nanomaterials to treat OA with a synergistic strategy that both remodels senescent cartilage and creates a pro-chondrogenic microenvironment.


Subject(s)
Nanoparticles , Osteoarthritis , Mice , Animals , Copper Sulfate , Chondrogenesis , Hydrogen Peroxide , Cartilage/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167083, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367900

ABSTRACT

OBJECTIVE: Spermidine (SPD) is an anti-aging natural substance, and it exerts effects through anti-apoptosis and anti-inflammation. However, the specific protective mechanism of SPD in osteoarthritis (OA) remains unclear. Here, we explored the role of SPD on the articular cartilage and the synovial tissue, and tested whether the drug would regulate the polarization of synovial macrophages by in vivo and in vitro experiments. METHODS: By constructing an OA model in mice, we preliminarily explored the protective effect of SPD on the articular cartilage and the synovial tissue. Meanwhile, we isolated and cultured human primary chondrocytes and bone marrow-derived macrophages (BMDMs), and prepared a conditioned medium (CM) to explore the specific protective effect of SPD in vitro. RESULTS: We found that SPD alleviated cartilage degeneration and synovitis, increased M2 polarization and decreased M1 polarization in synovial macrophages. In vitro experiments, SPD inhibited ERK MAPK and p65/NF-κB signaling in macrophages, and transformed macrophages from M1 to M2 subtypes. Interestingly, SPD had no direct protective effect on chondrocytes in vitro; however, the conditioned medium (CM) from M1 macrophages treated with SPD promoted the anabolism and inhibited the catabolism of chondrocytes. Moreover, this CM markedly suppressed IL-1ß-induced p38/JNK MAPK signaling pathway activation in chondrocytes. CONCLUSIONS: This work provides new perspectives on the role of SPD in OA. SPD does not directly target chondrocytes, but can ameliorate the degradation of articular cartilage through regulating M1/M2 polarization of synovial macrophages. Hence, SPD is expected to be the potential therapy for OA.


Subject(s)
Osteoarthritis , Spermidine , Humans , Mice , Animals , Spermidine/pharmacology , Spermidine/metabolism , Spermidine/therapeutic use , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Chondrocytes/metabolism , Macrophages/metabolism
3.
Biomaterials ; 312: 122720, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39084098

ABSTRACT

Mesenchymal stem cells (MSCs) are expected to be useful therapeutics in osteoarthritis (OA), the most common joint disorder characterized by cartilage degradation. However, evidence is limited with regard to cartilage repair in clinical trials because of the uncontrolled differentiation and weak cartilage-targeting ability of MSCs after injection. To overcome these drawbacks, here we synthesized CuO@MSN nanoparticles (NPs) to deliver Sox9 plasmid DNA (favoring chondrogenesis) and recombinant protein Bmp7 (inhibiting hypertrophy). After taking up CuO@MSN/Sox9/Bmp7 (CSB NPs), the expressions of chondrogenic markers were enhanced while hypertrophic markers were decreased in response to these CSB-engineered MSCs. Moreover, a cartilage-targeted peptide (designated as peptide W) was conjugated onto the surface of MSCs via a click chemistry reaction, thereby prolonging the residence time of MSCs in both the knee joint cavity of mice and human-derived cartilage. In a surgery-induced OA mouse model, the NP and peptide dual-modified W-CSB-MSCs showed an enhancing therapeutic effect on cartilage repair in knee joints compared with other engineered MSCs after intra-articular injection. Most importantly, W-CSB-MSCs accelerated cartilage regeneration in damaged cartilage explants derived from OA patients. Thus, this new peptide and NPs dual engineering strategy shows potential for clinical applications to boost cartilage repair in OA using MSC therapy.

4.
Bioact Mater ; 19: 444-457, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35574050

ABSTRACT

Mesenchymal stem cells (MSCs) therapy shows the potential benefits to relieve clinical symptoms of osteoarthritis (OA), but it is uncertain if it can repair articular cartilage lesions - the main pathology of OA. Here, we prepared biomimetic cupper sulfide@phosphatidylcholine (CuS@PC) nanoparticles (NPs) loaded with plasmid DNA (pDNA) encoding transforming growth factor-beta 1 (TGF-ß1) to engineer MSCs for enhanced OA therapy via cartilage regeneration. We found that the NPs not only promoted cell proliferation and migration, but also presented a higher pDNA transfection efficiency relative to commercial transfection reagent lipofectamine 3000. The resultant CuS/TGF-ß1@PC NP-engineered MSCs (termed CTP-MSCs) were better than pure MSCs in terms of chondrogenic gene expression, glycosaminoglycan deposition and type II collagen formation, favoring cartilage repair. Further, CTP-MSCs inhibited extracellular matrix degradation in interleukin-1ß-induced chondrocytes. Consequently, intraarticular administration of CTP-MSCs significantly enhanced the repair of damaged cartilage, whereas pure MSCs exhibited very limited effects on cartilage regeneration in destabilization of the medial meniscus (DMM) surgical instability mice. Hence, this work provides a new strategy to overcome the limitation of current stem cell therapy in OA treatment through developing more effective nanoengineered MSCs.

5.
Mater Today Bio ; 21: 100702, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37408696

ABSTRACT

Rheumatoid arthritis (RA) is a common chronic inflammatory disease characterized by the proliferation of fibroblast-like synoviocytes (FLS), pannus development, cartilage, and bone degradation, and, eventually, loss of joint function. Fibroblast activating protein (FAP) is a particular product of activated FLS and is highly prevalent in RA-derived fibroblast-like synoviocytes (RA-FLS). In this study, zinc ferrite nanoparticles (ZF-NPs) were engineered to target FAP+ (FAP positive) FLS. ZF-NPswere discovered to better target FAP+ FLS due to the surface alteration of FAP peptide and to enhance RA-FLS apoptosis by activating the endoplasmic reticulum stress (ERS) system via the PERK-ATF4-CHOP, IRE1-XBP1 pathway, and mitochondrial damage of RA-FLS. Treatment with ZF-NPs under the influence of an alternating magnetic field (AMF) can significantly amplify ERS and mitochondrial damage via the magnetocaloric effect. It was also observed in adjuvant-induced arthritis (AIA) mice that FAP-targeted ZF-NPs (FAP-ZF-NPs) could significantly suppress synovitis in vivo, inhibit synovial tissue angiogenesis, protect articular cartilage, and reduce M1 macrophage infiltration in synovium in AIA mice. Furthermore, treatment of AIA mice with FAP-ZF-NPs was found to be more promising in the presence of an AMF. These findings demonstrate the potential utility of FAP-ZF-NPs in the treatment of RA.

6.
Carbohydr Polym ; 294: 119821, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868770

ABSTRACT

While the early detection and repair of cartilage lesions are crucial in the treatment of osteoarthritis (OA), they remain challenging because neither clinically used medicines nor magnetic resonance (MR) contrast agents can achieve detection and repair simultaneously. Here, we conjugated carboxymethyl chitosan (CMC) with a cartilage-targeting peptide (WYRGRL, termed WY) and then synthesized CMC-assisted manganese oxide nanoparticles (MnOx NPs). The resultant WY-CMC-MnOx NPs demonstrated an excellent biocompatibility and a good T1 relaxivity of 1.72 mM-1·s-1. Owing to their ultrasmall size and cartilage-targeting ability, the WY-CMC-MnOx NPs considerably increased the MR imaging quality of cartilage lesions compared to non-cartilage-targeting NPs. In contrast, clinically used gadolinium-diethylenetriamine pentaacetic acid (Gd-DPTA) failed to detect the cartilage lesions. Furthermore, WY-CMC-MnOx promoted chondrogenesis in mesenchymal stem cells, thereby enhancing OA therapy through efficient cartilage regeneration after intraarticularly injection in destabilization of medial meniscus (DMM) rat models. Our results indicate that WY-CMC-MnOx NPs are promising for use in the diagnosis and treatment of early OA.


Subject(s)
Chitosan , Nanoparticles , Osteoarthritis , Animals , Cartilage , Chitosan/chemistry , Chondrogenesis , Nanoparticles/chemistry , Osteoarthritis/diagnostic imaging , Osteoarthritis/drug therapy , Rats
SELECTION OF CITATIONS
SEARCH DETAIL