Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
FASEB J ; 35(11): e21972, 2021 11.
Article in English | MEDLINE | ID: mdl-34613642

ABSTRACT

The misalignment of eating time and the endogenous circadian rhythm impairs the body's ability to maintain homeostasis. Although it is well established that children and growing animals differ from adults in their energy metabolism and behavioral patterns, little is known about how mistimed feeding disturbs the diurnal rhythms of behavior and metabolism in children and growing diurnal animals. In this study, growing pigs (diurnal animal) were randomly assigned to the daytime-restricted feeding (DRF) and nighttime-restricted feeding (NRF) groups for 5 weeks. Compared with observations in the DRF group, NRF disrupted the diurnal rhythm of behavior and clock genes and lowered the serum ghrelin, dopamine, and serotonin levels during the daytime and nighttime. Microbiome analysis results suggested that NRF altered the diurnal rhythm and composition of the gut microbiota, and increased log-ratios of Catenibacterium:Butyrivibrio and Streptococcus:Butyrivibrio. Based on the serum proteome, the results further revealed that rhythmic and upregulated proteins in NRF were mainly involved in oxidative stress, lipid metabolism, immunity, and cancer biological pathways. Serum physiological indicators further confirmed that NRF decreased the concentration of melatonin and fibroblast growth factor 21 during the daytime and nighttime, increased the diurnal amplitude and concentrations of very-low-density lipoprotein cholesterol, triglyceride, and total cholesterol, and increased the apolipoprotein B/ApoA1 ratio, which is a marker of metabolic syndrome. Taken together, this study is the first to reveal that mistimed feeding disrupts the behavioral rhythms of growing pigs, reprograms gut microbiota composition, reduces the serum levels of hormones associated with fighting depression and anxiety, and increases the risk of lipid metabolic dysregulation.


Subject(s)
Circadian Rhythm , Feeding Behavior , Lipid Metabolism , Animals , Swine
2.
FASEB J ; 35(1): e21166, 2021 01.
Article in English | MEDLINE | ID: mdl-33184921

ABSTRACT

An unfavorable lifestyle disrupts the circadian rhythm, leading to metabolic dysfunction in adult humans and animals. Increasing evidence suggests that night-restricted feeding (NRF) can effectively prevent ectopic fat deposition caused by circadian rhythm disruption, and reduce the risk of metabolic diseases. However, previous studies have mainly focused on the prevention of obesity in adults by regulating dietary patterns, whereas limited attention has been paid to the effect of NRF on metabolism during growth and development. Here, we used weaning rabbits as models and found that NRF increased body weight gain without increasing feed intake, and promoted insulin-mediated protein synthesis through the mTOR/S6K pathway and muscle formation by upregulating MYOG. NRF improved the circadian clock, promoted PDH-regulated glycolysis and CPT1B-regulated fatty-acid ß-oxidation, and reduced fat content in the serum and muscles. In addition, NRF-induced body temperature oscillation might be partly responsible for the improvement in the circadian clock and insulin sensitivity. Time-restricted feeding could be used as a nondrug intervention to prevent obesity and accelerate growth in adolescents.


Subject(s)
Circadian Clocks , Circadian Rhythm , Eating , Feeding Behavior , Obesity , Animals , Male , Obesity/metabolism , Obesity/pathology , Obesity/prevention & control , Rabbits
3.
J Pineal Res ; 66(4): e12543, 2019 May.
Article in English | MEDLINE | ID: mdl-30584671

ABSTRACT

Aflatoxin B1 (AFB1) is a major food and feed contaminant that threaten public health. Previous studies indicate that AFB1 exposure disrupted oocyte maturation. However, an effective and feasible method is unavailable for protecting oocytes against toxicity of AFB1. In the present study, using in vitro matured porcine oocytes and parthenogenetic embryos as model, we confirmed that AFB1 exposure during in vitro oocyte maturation (IVM) significantly impaired both nuclear and cytoplasmic maturation in a dose- and time-dependent manner. The different concentrations of melatonin were also tested for their protective effects on oocytes against the AFB1-induced toxicity. Our results showed that supplementation of a relative high concentration of melatonin (10-3 mol/L) during IVM efficiently reversed the impaired development rate and blastocyst quality, to the levels comparable to those of the control group. Further analysis indicated that melatonin application efficiently alleviated reactive oxygen species accumulation and initiation of apoptosis induced by AFB1 exposure. In addition, disrupted GSH/GPX system, as well as inhibited mitochondrial DNA (mtDNA) replication and mitochondrial biogenesis in AFB1-treated oocytes, can be notably reversed by melatonin application. Furthermore, cumulus cells may be important in mediating the toxicity of AFB1 to oocytes, and the metabolism of AFB1 in cumulus cells can be depressed by melatonin. To the best of our knowledge, this is the first report to confirm that melatonin application can efficiently protect oocytes from AFB1-induced toxicity. Our study provides a promising and practical strategy for alleviating or reversing AFB1-induced female reproductive toxicity in both clinical treatment and domestic reproductive management.


Subject(s)
Aflatoxin B1/pharmacology , In Vitro Oocyte Maturation Techniques , Melatonin/pharmacology , Oocytes/cytology , Oocytes/drug effects , Animals , Apoptosis/drug effects , Cells, Cultured , Cumulus Cells/cytology , Cumulus Cells/drug effects , Cumulus Cells/metabolism , DNA Copy Number Variations/genetics , DNA Copy Number Variations/physiology , DNA, Mitochondrial/drug effects , Female , Glutathione/metabolism , In Situ Nick-End Labeling , Oocytes/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Swine
4.
Proc Natl Acad Sci U S A ; 113(12): 3197-202, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26951653

ABSTRACT

Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications.


Subject(s)
Chromosomes, Human, X , Genomic Imprinting , Sex Ratio , X Chromosome Inactivation , Female , Fertilization in Vitro , Humans
5.
J Reprod Dev ; 63(3): 247-261, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28367907

ABSTRACT

Well-organized mitochondrial functions and dynamics are critical for early embryonic development and are operated via a large number of mitochondria-related genes (MtGs) encoded by both the nuclear and the mitochondrial genome. However, the mechanisms underlying mitochondrial modifications during the critical window between blastocyst implantation and postimplantation organogenesis are poorly understood. Herein, we performed high-resolution dynamic profiling of MtGs to acquire a more detailed understanding of mitochondrial modifications during early development. Our data suggest that the resumption of mitochondrial mass growth is not only facilitated by increased mitochondrial biogenesis and mitochondrial DNA (mtDNA) replication, but also by the appropriate balance between mitochondrial fission and fusion. In addition, increased levels of reactive oxygen species (ROS) resulting from enhanced mitochondrial functions may be the critical inducer for activating the glutathione (GSH)-based stress response system in early embryos. The appropriate balance between the mitochondrial stress response and apoptosis appears to be significant for cell differentiation and early organogenesis. Furthermore, we found that most MtGs undergo de novo promoter methylation, which may have functional consequences on mitochondrial functions and dynamics during early development. We also report that mtDNA methylation can be observed as early as soon after implantation. DNMT1, the predominant enzyme for maintaining DNA methylation, localized to the mitochondria and bound to mtDNA by the implantation stage. Our study provides a new insight into the involvement of mitochondria in early mammalian embryogenesis. We also propose that the epigenetic modifications during early development are significant for modulating mitochondrial functions and dynamics.


Subject(s)
DNA Methylation , Embryonic Development , Mitochondria/physiology , Animals , Embryo, Mammalian/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Male , Mice, Inbred ICR , Organogenesis
6.
Biochem Biophys Res Commun ; 476(4): 225-229, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27221047

ABSTRACT

The parthenotes represent ideal models mimicking the embryonic development and characterizing the function of maternal genomes as well as an alternative source of pluripotent cell lines. Besides, parthenogenetically activated (PA) embryos serve as a rapid assay system to maximize the efficiency of generating genetically modified pig CRISPR/Cas9 system, an efficient and multiplex gene editing tool, has been utilized to modify the genome of porcine parthenotes. However, lower biallelic mutation rate and high mosaicism frequency were observed. Here, we aimed to enhance the biallelic mutation rate with reduced mosaicism by optimization of the concentration and injection time of the Cas9/sgRNA mixture in porcine parthenotes. The results showed that the efficient biallelic mutation (93%) and low mosaicism (33%) could be achieved in porcine parthenotes by cytoplasmic injection of Cas9 mRNA/sgRNA (125/12.5 ng/µl) after 8 h of parthenogenetical activation. Thus, our study provides an effective strategy for increasing the biallelic mutation rate and population homogeneity of genetically modified parthenotes, which will strengthen the role of parthenotes in uncovering early embryonic development and assessing the mutation efficiency due to the simplicity and adaptability of CRISPR/Cas9.


Subject(s)
Animals, Genetically Modified/genetics , CRISPR-Cas Systems , Mutation , Swine/genetics , Alleles , Animals , Base Sequence , Clustered Regularly Interspaced Short Palindromic Repeats , Female , Gene Targeting , Mosaicism , Parthenogenesis , RNA Editing , RNA, Messenger/genetics
7.
Biol Reprod ; 92(5): 123, 2015 May.
Article in English | MEDLINE | ID: mdl-25788660

ABSTRACT

The high quality of induced pluripotent stem cells (iPSCs) has been determined to be high-grade chimeras that are competent for germline transmission, and viable mice can be generated through tetraploid complementation. Most of the high-quality iPSCs described to date have been male. Female iPSCs, especially fully pluripotent female iPSCs, are also essential for clinical applications and scientific research. Here, we show, for the first time, that a gender-mixed induction strategy could lead to a skewed sex ratio of iPSCs. After reprogramming, 50%, 70%, and 90% female initiating mouse embryonic fibroblasts at different male ratios resulted in 14.1 ± 6.8% (P < 0.05), 31.8 ± 5.4% (P < 0.05), and 80.1 ± 2.8% (P < 0.05) female iPSCs, respectively. Furthermore, these female iPSCs had pluripotent properties typical of embryonic stem cells. Importantly, these fully pluripotent female iPSCs could generate viable mice by tetraploid complementation. These findings indicate that high-quality female iPSCs could be derived effectively, and suggest that clinical application of female iPSCs is feasible.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells/physiology , Animals , Cytological Techniques/methods , Female , Male , Mice , Sex Chromosomes , Sex Ratio
8.
Hum Reprod ; 30(12): 2892-911, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26385791

ABSTRACT

STUDY QUESTION: Does in vitro fertilization (IVF) induce comprehensive and consistent changes in gene expression associated with mitochondrial biogenesis and function in mouse embryos from the pre- to post-implantation stage? SUMMARY ANSWER: IVF-induced consistent mitochondrial dysfunction in early mouse embryos by altering the expression of a number of mitochondria-related genes. WHAT IS KNOWN ALREADY: Although IVF is generally safe and successful for the treatment of human infertility, there is increasing evidence that those conceived by IVF suffer increased health risks. The mitochondrion is a multifunctional organelle that plays a crucial role in early development. We hypothesized that mitochondrial dysfunction is associated with increased IVF-induced embryonic defects and risks in offspring. STUDY DESIGN, SIZE, DURATION: After either IVF and development (IVO groups as control) or IVF and culture (IVF groups), blastocysts were collected and transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5, and the expression profiles of mitochondria-related genes from the pre- to post-implantation stage were compared. PARTICIPANTS/MATERIALS, SETTING, METHODS: ICR mice (5- to 6-week-old males and 8- to 9-week-old females) were used to generate IVO and IVF blastocysts. Embryo day (E) 3.5 blastocysts were transferred to pseudo-pregnant recipient mice. Both IVO and IVF embryos were sampled at E3.5, E7.5 and E10.5 for generating transcriptome data. Mitochondria-related genes were filtered for dynamic functional profiling. Mitochondrial dysfunctions indicated by bioinformatic analysis were further validated using cytological and molecular detection, morphometric and phenotypic analysis and integrated analysis with other high-throughput data. MAIN RESULTS AND THE ROLE OF CHANCE: A total of 806, 795 and 753 mitochondria-related genes were significantly (P < 0.05) dysregulated in IVF embryos at E3.5, E7.5 and E10.5, respectively. Dynamic functional profiling, together with cytological and molecular investigations, indicated that IVF-induced mitochondrial dysfunctions mainly included: (i) inhibited mitochondrial biogenesis and impaired maintenance of DNA methylation of mitochondria-related genes during the post-implantation stage; (ii) dysregulated glutathione/glutathione peroxidase (GSH/Gpx) system and increased mitochondria-mediated apoptosis; (iii) disturbed mitochondrial ß-oxidation, oxidative phosphorylation and amino acid metabolism; and (iv) disrupted mitochondrial transmembrane transport and membrane organization. We also demonstrated that some mitochondrial dysfunctions in IVF embryos, including impaired mitochondrial biogenesis, dysregulated GSH homeostasis and reactive oxygen species-induced apoptosis, can be rescued by treatment with melatonin, a mitochondria-targeted antioxidant, during in vitro culture. LIMITATIONS, REASONS FOR CAUTION: Findings in mouse embryos and fetuses may not be fully transferable to humans. Further studies are needed to confirm these findings and to determine their clinical significance better. WIDER IMPLICATIONS OF THE FINDINGS: The present study provides a new insight in understanding the mechanism of IVF-induced aberrations during embryonic development and the increased health risks in the offspring. In addition, we highlighted the possibility of improving existing IVF systems by modulating mitochondrial functions.


Subject(s)
Embryonic Development/genetics , Fertilization in Vitro/methods , Mitochondria/genetics , Animals , Apoptosis/genetics , DNA Methylation , Embryo Culture Techniques , Embryo Transfer/methods , Female , Male , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Organelle Biogenesis , Oxidative Stress/genetics , Pregnancy
9.
Biol Reprod ; 91(6): 155, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25320150

ABSTRACT

As the interface between the mother and the developing fetus, the placenta is believed to play an important role in assisted reproductive technology (ART)-induced aberrant intrauterine and postnatal development. However, the mechanisms underlying aberrant placentation remain unclear, especially during extraembryonic tissue development and early stages of placental formation. Using a mouse model, this investigation provides the first comparative proteomic analysis of in vivo (IVO) and in vitro-produced (IVP) extraembryonic tissues and placentas after IVO fertilization and development, or in vitro fertilization and culture, respectively. We identified 165 and 178 differentially expressed proteins (DEPs) between IVO and IVP extraembryonic tissues and placentas on Embryonic Day 7.5 (E7.5) and E10.5, respectively. Many DEPs were functionally associated with genetic information processing, such as impaired de novo DNA methylation, as well as posttranscriptional, translational and posttranslational dysregulation. These novel findings were further confirmed by global hypomethylation, and a lower level of correlation was found between the transcriptome and proteome in the IVP groups. In addition, numerous DEPs were involved in energy and amino acid metabolism, cytoskeleton organization and transport, and vasculogenesis and angiogenesis. These disturbed processes and pathways are likely to be associated with embryonic intrauterine growth restriction, an enlarged placenta, and impaired labyrinth morphogenesis. This study provides a direct and comprehensive reference for the further exploration of the placental mechanisms that underlie ART-induced developmental aberrations.


Subject(s)
Embryonic Development , Extraembryonic Membranes/metabolism , Placenta/metabolism , Proteome/analysis , Animals , Cells, Cultured , Embryo Culture Techniques , Embryo, Mammalian , Extraembryonic Membranes/chemistry , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred ICR , Placenta/chemistry , Pregnancy , Proteomics
10.
Front Microbiol ; 15: 1344992, 2024.
Article in English | MEDLINE | ID: mdl-38476945

ABSTRACT

Seasonal environmental shifts and improper eating habits are the important causes of diarrhea in children and growing animals. Whether adjusting feeding time at varying temperatures can modify cecal bacterial structure and improve diarrhea remains unknown. Three batches growing rabbits with two groups per batch were raised under different feeding regimens (fed at daytime vs. nighttime) in spring, summer and winter separately, and contents were collected at six time points in 1 day and used 16S rRNA sequencing to investigate the effects of feeding regimens and season on the composition and circadian rhythms of cecum bacteria. Randomized forest regression screened 12 genera that were significantly associated with seasonal ambient temperature changes. Nighttime feeding reduced the abundance of the conditionally pathogenic bacteria Desulfovibrio and Alistipes in summer and Campylobacter in winter. And also increases the circadian rhythmic Amplicon Sequence Variants in the cecum, enhancing the rhythm of bacterial metabolic activity. This rhythmic metabolic profile of cecum bacteria may be conducive to the digestion and absorption of nutrients in the host cecum. In addition, this study has identified 9 genera that were affected by the combination of seasons and feeding time. In general, we found that seasons and feeding time and their combinations affect cecum composition and circadian rhythms, and that daytime feeding during summer and winter disrupts the balance of cecum bacteria of growing rabbits, which may adversely affect cecum health and induce diarrhea risk.

11.
J Proteome Res ; 12(9): 3843-56, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23841881

ABSTRACT

Assisted reproductive technology (ART) increasingly is associated with long-term side-effects on postnatal development and behaviors. High-throughput gene expression analysis has been extensively used to explore mechanisms responsible for these disorders. Our study, for the first time, provides a comparative proteomic analysis between embryos after in vivo fertilization and development (IVO, control) and in vitro fertilization and culture (IVP). By comparing the dynamic proteome during the postimplantation period, we identified 300 and 262 differentially expressed proteins (DEPs) between IVO and IVP embryos at embryonic day 7.5 (E7.5) and E10.5, respectively. Bioinformatic analysis showed many DEPs functionally associated with post-transcriptional, translational, and post-translational regulation, and these observations were consistent with correlation analysis between mRNA and protein abundance. In addition to altered gene expression due to IVP procedures, our findings suggest that aberrant processes at these various levels also contributed to proteomic alterations. In addition, numerous DEPs were involved in energy and amino acid metabolism, as well as neural and sensory development. These DEPs are potential candidates for further exploring the mechanism(s) of ART-induced intrauterine growth restriction and neurodevelopmental disorders. Moreover, significant enrichment of DEPs in pathways of neurodegenerative diseases implies the potentially increased susceptibility of ART offspring to these conditions as adults.


Subject(s)
Embryo, Mammalian/metabolism , Proteome/metabolism , Animals , Embryo Culture Techniques , Embryonic Development , Female , Fertilization in Vitro , Gene Expression Regulation, Developmental , Gene Ontology , Male , Mice , Mice, Inbred ICR , Phenotype , Pregnancy , Protein Interaction Maps , Proteome/genetics , Proteome/isolation & purification , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
12.
J Pineal Res ; 54(4): 389-97, 2013 May.
Article in English | MEDLINE | ID: mdl-24325731

ABSTRACT

This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals.


Subject(s)
Antioxidants/pharmacology , Embryo, Mammalian/drug effects , Melatonin/pharmacology , Animals , Cloning, Organism , Reverse Transcriptase Polymerase Chain Reaction , Swine
13.
J Pineal Res ; 55(1): 31-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23506542

ABSTRACT

This study focused on the effect of melatonin on reprogramming with specific regard to the generation of induced pluripotent stem cells (iPSCs). Here, a secondary inducible system, which is more accurate and suitable for studying the involvement of chemicals in reprogramming efficiency, was used to evaluate the effect of melatonin on mouse iPSC generation. Secondary fibroblasts collected from all-iPSC mice through tetraploid complementation were cultured in induction medium supplemented with melatonin at different concentrations (0, 10(-6), 10(-7), 10(-8), 10(-9), or 10(-10 )m) or with vitamin C (50 µg/mL) as a positive control. Compared with untreated group (0.22 ± 0.04% efficiency), 10(-8) (0.81 ± 0.04%), and 10(-9 )m (0.83 ± 0.08%) melatonin supplementation significantly improved reprogramming efficiency (P < 0.05). Moreover, we verified that the iPSCs induced by melatonin treatment (MiPSCs) had the same characteristics as typical embryonic stem cells (ESCs), including expression of the pluripotency markers Oct4, Sox2, and Nanog, the ability to form teratomas and all three germ layers of the embryo, as well as produce chimeric mice with contribution to the germ line. Interestingly, only the melatonin receptor MT2 was detected in secondary fibroblasts, while MiPSCs and ESCs expressed MT1 and MT2 receptors. Furthermore, during the early stage of reprogramming, expression of the apoptosis-related genes p53 and p21 was lower in the group treated with 10(-9) m melatonin compared with the untreated controls. In conclusion, melatonin supplementation enhances the efficiency of murine iPSC generation. These beneficial effects may be associated with inhibition of the p53-mediated apoptotic pathway.


Subject(s)
Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/physiology , Melatonin/pharmacology , Animals , Brain Chemistry , Cells, Cultured , Chimera/genetics , Chimera/metabolism , Female , Fibroblasts , Induced Pluripotent Stem Cells/cytology , Male , Mice , Mice, Inbred ICR , Mice, SCID , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Receptors, Melatonin/genetics , Receptors, Melatonin/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
14.
Animals (Basel) ; 13(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36766434

ABSTRACT

To improve prediction accuracy and provide sufficient time to control decision-making, a decomposition-based multi-step forecasting model for rabbit house environmental variables is proposed. Traditional forecasting methods for rabbit house environmental parameters perform poorly because the coupling relationship between sequences is ignored. Using the STL algorithm, the proposed model first decomposes the non-stationary time series into trend, seasonal, and residual components and then predicts separately based on the characteristics of each component. LSTM and Informer are used to predict the trend and residual components, respectively. The aforementioned two predicted values are added together with the seasonal component to obtain the final predicted value. The most important environmental variables in a rabbit house are temperature, humidity, and carbon dioxide concentration. The experimental results show that the encoder and decoder input sequence lengths in the Informer model have a significant impact on the model's performance. The rabbit house environment's multivariate correlation time series can be effectively predicted in a multi-input and single-output mode. The temperature and humidity prediction improved significantly, but the carbon dioxide concentration did not. Because of the effective extraction of the coupling relationship among the correlated time series, the proposed model can perfectly perform multivariate multi-step prediction of non-stationary time series.

15.
ISA Trans ; 139: 660-674, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37080892

ABSTRACT

Analyzing the vibration features of a shipboard stabilized platform (SSP) is significant to the design or vibration compensation of a marine gravimetric survey vibration isolation system. Empirical Fourier decomposition (EFD) is a recently developed method for nonlinear and non-stationary signal decomposition. However, the spectral segmentation boundary needs to be set in advance according to sophisticated experience, and it is easy to be disturbed by noise, and the decomposition result is inaccurate. In order to accurately extract the nonlinear vibration characteristics of SSP, this paper proposes a new method called power spectrum envelope adaptive empirical Fourier decomposition (PSEEFD). Firstly, the number of selected modal decomposition is determined based on the mutual information to realize adaptive segmentation. Then, the improved power spectrum envelope segmentation method is adopted to effectively diminish the interference of noise since the segmentation boundary is formed by the minimum of the adjacent extreme points enveloped by the maximum value of the power spectrum. The spectrum segments obtained from segmentation contain less interference. Finally, the component signal in each frequency band is reconstructed by inverse fast Fourier transform, and the instantaneous frequency signal component with physical significance is obtained. Through the analysis of vibration simulation signals and measured data of SSP, the proposed method is compared with EMD, AFVMD, EWT and EFD. The results show that PSEEFD has a well suppression of noise interference and can effectively extract the characteristics of nonlinear vibration signals.

16.
Animals (Basel) ; 13(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37685006

ABSTRACT

Mammals exhibit circadian rhythms in their behavior and physiological activities to adapt to the diurnal changes of the environment. Improper feeding methods can disrupt the natural habits of animals and harm animal health. This study investigated the effects of feeding amount and feeding time on growing rabbits in northern China during spring. A total of 432 healthy 35-day-old weaned rabbits with similar body weight were randomly assigned to four groups: whole day diet-unrestricted feeding (WUF), whole day diet-restricted feeding (WRF), nighttime diet-unrestricted feeding (NUF), and nighttime diet-restricted feeding (NRF). The results showed that nighttime diet-unrestricted feeding improved performance, circadian rhythm of behavior, and body temperature, while reducing the risk of diarrhea and death. WRF group increased daytime body temperature but had no significant difference in feed conversion rate. The study suggests that nighttime diet-unrestricted feeding in spring can improve the growth and welfare of rabbits in northern China. Our study underscores the pivotal role of feeding timing in enhancing animal health. Future investigations should delve into the underlying mechanisms and expand the application of this strategy across seasons and regions to improve rabbit husbandry practices.

17.
Biochem Biophys Res Commun ; 428(3): 405-10, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23103373

ABSTRACT

In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.


Subject(s)
Adipogenesis , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans/enzymology , Fatty Acid Desaturases/biosynthesis , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/metabolism , Animals , Apoptosis , Caenorhabditis elegans Proteins/genetics , Cell Proliferation , Fatty Acid Desaturases/genetics , Mice
18.
Sci Rep ; 12(1): 18892, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36344605

ABSTRACT

Intelligent and coordinated unmanned aerial vehicle (UAV) swarm combat will be the main mode of warfare in the future, and mechanistic design of autonomous cooperation within swarms is the key to enhancing combat effectiveness. Exploration of the essential features and patterns of autonomous collaboration in unmanned swarms has become the focus of scientific research and technological applications, in keeping with the evolving conceptions of the military theatre. However, given the unique attributes of the military and the novelty of the warfare mode of unmanned swarms, few achievements have been reported in the existing research. In this study, we analysed the military requirements of unmanned swarm operations and proposed an analytic framework for autonomous collaboration. Then, a literature review addressing swarm evolution dynamics, game-based swarm collaboration, and collaborative evolution on complex networks was conducted. Next, on the basis of the above work, we designed a community network for unmanned swarm cooperation and constructed a collaborative evolution model based on the multiplayer public goods game (PGG). Furthermore, according to the "network" and "model", the dynamic evolution process of swarm collaboration was formally deduced. Finally, a simulation was conducted to analyse the influence of relevant parameters (i.e., swarm size, degree distribution, cost, multiplication factor) on the collaborative behaviour of unmanned swarms. According to the simulation results, some reasonable suggestions for collaborative management and control in swarm operation are given, which can provide theoretical reference and decision-making support for the design of coordination mechanisms and improved combat effectiveness in unmanned swarm operation.

19.
J Food Biochem ; 46(10): e14271, 2022 10.
Article in English | MEDLINE | ID: mdl-35715997

ABSTRACT

Munage grape (Vitis vinifera L. cv. Munage.) is a unique cultivar in southern Xinjiang, China. Spike stalk browning in this species has becomes more common in recent years, negatively impacting the shelf life, and causing severe economic losses during storage. This study investigated the changes in metabolisms of cell wall by Botrytis cinerea infection in association with spike stalk browning. Morphological and physiological observations showed that preharvest B. cinerea infection accelerates the spike stalk browning during storage in Munage grapes by promoting cell wall degradation. Accordingly, the cell structures in infected spike stalk showed severe collapse, while the cell structures in uninfected spike stalk remained relatively complete. Furthermore, the contents of CDTA-soluble pectin (CSP), Na2 CO3 -soluble pectin (NSP), cellulose, and hemicellulose were reduced, while the water-soluble pectin (WSP) content was increased during infection. In addition, the activities of polygalacturonase (PG), pectin methylesterase (PME), beta-galactosidase (ß-Gal), and cellulase (Cx) were highly promoted by B. cinerea. Correspondingly, the expression levels of VvPG were markedly upregulated after inoculation and played a major role in cell wall degradation. Additionally, the spike stalk inoculated by B. cinerea showed higher activities of PPO and POD, and content of total phenolics. These results contribute to elucidating the relationship between cell wall degradation induced by B. cinerea during spike stalk browning and provide a basis for future research on improving the ability of the host cell wall to resist degrading enzymes. PRACTICAL APPLICATIONS: Botrytis cinerea is the main fungal pathogen causing the gray mold of grapes. It usually enters the tissue early in crop development, has a long incubation period, and rapidly infects the tissue when the environment is favorable and the host physiology changes. Gray mold has been reported as one of the major postharvest diseases of grapes. However, there are relatively few reports on the pathways through which B. cinerea causes the browning of grape stalks. Controlling browning caused by B. cinerea may require clarification of the physiological and molecular mechanisms by which browning occurs. The elucidation of the role of B. cinerea in causing browning of grape stalks through the cell wall degradation pathway will help to provide scientific basis for further controlling browning, maintaining freshness of stalks, developing biological agents to prevent browning, improving grape quality, and extending storage period.


Subject(s)
Cellulases , Vitis , Biological Factors/metabolism , Botrytis , Cell Wall/metabolism , Cellulases/metabolism , Cellulose/metabolism , Pectins , Plant Diseases/microbiology , Polygalacturonase/genetics , Vitis/microbiology , Water , beta-Galactosidase/metabolism
20.
Animals (Basel) ; 12(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36009680

ABSTRACT

Several countries and regions have regulations in place to provide standards for the welfare of production animals, which have implications for breeding, management and trade. In the chicken egg production industry, the welfare impacts of this are not well understood. In the past decades, free-range systems were widely used for local chicken breeds in poultry industry in China, but their use has gradually declined due to the lower competitiveness compared to commercial cage systems. However, the practices of free-range systems for hens raising have gradually increased again over the past decade, as consumer individualized demand for higher food quality and animal welfare has increased. We recruited 14 free-range farms and 45 cage farms from Beijing, Shandong, Hebei, Anhui, Yunnan, Gansu and Jiangsu provinces in China, for an evaluation of hen welfare, production and economic outcomes from farm operations. This study provides data for the welfare outcomes of laying hens in China and preliminarily explored the relationship between welfare level and economic income within farming system types. The researchers visited the farms and used Welfare Quality measures to investigate the welfare, and farm self-reported profits. Nonparametric Mann−Whitney U tests were used to compare the welfare scores between cage and free-range rearing farms. Correlation and regression are used for the analysis of the animal welfare scores, economic data, and production metrics. The general income from free-range farms was linearly correlated with red mite score and stocking density (p < 0.001 and p < 0.05, respectively). The results showed less centimeters of feeder and drinker space per animal in the free-range system than in cage systems (p < 0.05 and p < 0.01, respectively). Welfare scores for both the stocking density and beak condition were significantly better in the free-range systems than the cage systems (p < 0.001), as were qualitative behavior assessment scores (p < 0.05). The total egg production and peak egg production in cage farms were much higher than in free-range farms (p < 0.001), and egg loss rate was significantly lower (p < 0.001). While the production efficiency of free-range farms was lower than that of cage farms, general income per 10,000 hens was actually higher. Our results provide some evidence that some welfare indicators and general income (per 10,000 hens) in free-range farms in China were better than those of cage farms. The results indicate that better parasite control and lower stocking densities may result in improved hen welfare on free-range farms and potentially improve profitability. The level of welfare and economic benefits of free-range farms vary widely, and there was potential room for improvement in feeding space, drinking water space and human−animal relationship.

SELECTION OF CITATIONS
SEARCH DETAIL