Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Inorg Chem ; 62(19): 7333-7341, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37133387

ABSTRACT

Zintl compounds often feature complex structural fragments and small band gaps, favoring promising thermoelectric properties. In this work, a new phase Ca2ZnSb2 is synthesized and characterized to be a LiGaGe-type structure. It is isotypic to Yb2MnSb2 with half vacancies at transition metal sites and undergoes a phase transition to Ca9Zn4+xSb9 after annealing. Interestingly, Ca2ZnSb2 and Yb2MnSb2 are amenable to diverse doping mechanisms at different sites. Here, by substituting smaller Li on cation sites, two novel layered compounds Ca1.84(1)Li0.16(1)Zn0.84(1)Sb2 and Yb1.82(1)Li0.18(1)Mn0.96(1)Sb2 with the P63/mmc space group are discovered, which can be viewed as derivatives of LiGaGe type. Despite having lower occupancy, the structural stability is improved compared with the prototype compounds owing to the reduced interlayered distances. Besides, the band structure analyses demonstrate that the bands near the Fermi level are mainly governed by the interlayered interaction. Due to the highly disordered structure, Yb1.82Li0.18Mn0.96Sb2 features ultralow thermal conductivity from 0.79 to 0.47 W·m-1·K-1 among the testing range; in addition, a remarkable Seebeck coefficient of 270.77 µV·K-1 at 723 K is observed. The discovery of the Ca2ZnSb2 phase enriches the 2-1-2 map, and the size effect induced by cations provides new ideas for material designing.

2.
Inorg Chem ; 60(18): 14357-14363, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34450003

ABSTRACT

A series of Mg/Mn mixed intermetallic compounds Mg1-xMn2+xAs2 (x = 0.17, 0.48, 0.69) were synthesized by using metal flux reactions. Single-crystal X-ray diffraction measurements indicated that CaAl2Si2-type phases with Mn and Mg atoms located on the cation sites (Wickoff site: 1a) were obtained. The special structure of these Mg1-xMn2+xAs2 compounds corresponded to unique magnetic behavior, which led to increased divergence between zero-field-cooling (ZFC) and field-cooling magnetic susceptibilities with decreasing temperature. The small magnetic hysteresis loop measured at 300 K for Mg0.31(2)Mn2.69As2 revealed its room-temperature ferromagnetism, and its ZFC exchange bias behavior at low temperatures indicated the existence of both ferromagnetic (FM) and antiferromagnetic (AFM) interactions. Spin-polarized density functional theory calculations were also performed to verify the magnetic ground state, and these were consistent with the experimental results.

3.
Inorg Chem ; 60(6): 4026-4033, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33635076

ABSTRACT

Zintl phases with nominal 9-4-9 formulas are very interesting for their potential applications as thermoelectric materials. However, the formation of such phases usually requires divalent transition metals, for example, Zn, Mn, and Cd, which are covalently bonded to the pnictogen atoms. In this report, for the first time, two Mg-containing compounds with such structures as Sr9Mg4.45(1)Bi9 and Sr9Mg4.42(1)Sb9 were synthesized and their structures were determined by the single-crystal X-ray diffraction method. Both title compounds crystallize in the orthorhombic space group Pnma and are isostructural with Ca9Mn4.41(1)Sb9, which features complex polyanion structures compared to the classical 9-4-9 phases. For Sr9Mg4.45(1)Bi9, its low thermal conductivity, combined with its high electrical conductivity and moderate Seebeck coefficient, leads to a decent figure of merit of 0.57 at 773 K, which obviously prevails in the unoptimized 9-4-9 phases. The discovery of such Mg-containing 9-4-9 phases is very significant, as the discovery not only enriches the structure map of the well-known 9-4-9 family but also provides very valuable thermoelectric candidates surely deserving of more in-depth investigation.

4.
Opt Lett ; 45(18): 5061-5064, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932453

ABSTRACT

A new generation of orthogonally polarized dual-wavelength lasers was demonstrated using a dye mode-locked neodymium-doped yttrium aluminum garnet laser for the first time. With a hexagonal Cs2TeMo3O12 as the Raman medium, efficient dual-wavelength stimulated Raman scattering was obtained at 1175 and 1154 nm with similar output power, corresponding to the stretching vibration of Mo-O and the asymmetric stretching vibrations of Mo-O and Te-O groups, respectively. The power ratio of two Raman components can be flexibly adjusted by tuning the polarization of the incident laser, which can be tuned from 0% to 100%. Laser sources with such a small wavelength separation could prove interesting for the difference-frequency generation of terahertz waves in the 4.6 THz range. Our study provides a simple and flexible method to achieve a promising dual-wavelength laser source in orthogonal polarization by Raman-based nonlinear frequency conversions.

5.
Inorg Chem ; 59(6): 3709-3717, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32096622

ABSTRACT

Three new quaternary Zintl phases with the "9-4-9" formula, Ae9Mn4-xAlxSb9 (Ae = Ca, Yb, Eu), have been synthesized using Pb as the metal flux, and their crystal structures have been established by single-crystal X-ray diffraction. Both Ca9Mn2.91(4)Al1.09Sb9 and Yb9Mn3.59(6)Al0.41Sb9 are isostructural with Ca9Mn4Bi9, and they crystallize in the orthorhombic space group Pbam with unit cell dimensions of a = 12.4571(8), 12.2884(16) Å, b = 22.1352(16), 22.024(3) Å, and c = 4.6012(3), 4.6187(6) Å, respectively. Their anionic structures can be viewed as infinite ribbons based on corner-shared tetrahedrons. Also, Eu9Mn2.87(4)Al1.13Sb9 has the space group Cmca and a = 9.4883(7) Å, b = 23.6895(18) Å, and c = 24.4845(19) Å. The structural relationships between Ca9Mn2.91(4)Al1.09Sb9 and Eu9Mn2.87(4)Al1.13Sb9 are compared and discussed as well. The successful Al3+ substitution provides additional electrons to the compounds to achieve structural stability. Magnetic susceptibility and electrical resistivity measurements, performed on single crystals of Eu9Mn2.87(4)Al1.13Sb9, indicate complex magnetic properties and semiconductor behavior. The physical properties of Yb9Mn3.59(6)Al0.41Sb9 are similar to those observed for Yb9Mn4.18(2)Sb9.

6.
Opt Express ; 25(21): 24893-24900, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041162

ABSTRACT

The high efficiency acousto-optic modulators become indispensable in photonics and optoelectronics for the pulse generation and signal modulation in optical display and telecommunications. In this paper, the validity and feasibility of the biaxial crystals as acousto-optic mediums have been theoretically analyzed and confirmed by experiments using a biaxial crystal of ß-BaTeMo2O9. The diffraction angle and diffraction efficiency of the ß-BaTeMo2O9 acousto-optic Q-switch are determined to be 1.420° and 78.1%, which are comparable with that of TeO2 acousto-optic modulator at the identical operating wavelength of 1064 nm and 100 MHz, respectively. The minimum of the modulated pulse width can be achieved to be 6 ns at 5 kHz with Nd:YVO4 as the gain medium. The results not only provide an excellent acousto-optic medium, but also explore the field of biaxial acousto-optic medium for device fabrications.

7.
Inorg Chem ; 56(20): 12369-12378, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-28968067

ABSTRACT

Two new ternary manganese bismuthides have been synthesized and their structures established based on single-crystal X-ray diffraction methods. Sr2MnBi2 crystallizes in the orthorhombic space group Pnma (a = 16.200(9) Å, b = 14.767(8) Å, c = 8.438(5) Å, V = 2018(2) Å3; Z = 12; Pearson index oP60) and is isostructural to the antimonide Sr2MnSb2. The crystal structure contains corrugated layers of corner- and edge-shared [MnBi4] tetrahedra and Sr atoms enclosed between these layers. Electronic structure calculations suggest that Sr2MnBi2 is a magnetic semiconductor possessing Mn2+ (high-spin d5) ions, and its structure can be rationalized within the Zintl concept as [Sr2+]2[Mn2+][Bi3-]2. The temperature dependence of the resistivity shows behavior consistent with a degenerate semiconductor/poor metal, and magnetic susceptibility measurements reveal a high degree of frustration resulting from the two-dimensional nature of the structure. The compositionally similar Ba2Mn1-xBi2 (x ≈ 0.15) crystallizes in a very different structure (space group Imma, a = 25.597(8) Å, b = 25.667(4) Å, c = 17.128(3) Å, V = 11253(4) Å3; Z = 64; Pearson index oI316) with its own structure type. The complex structure boasts Mn atoms in a variety of coordination environments and can be viewed as consisting of two interpenetrating 3D frameworks, linked by Bi-Bi bonds. Ba2Mn1-xBi2 can be regarded as a highly reduced compound with anticipated metallic behavior.

8.
Inorg Chem ; 56(3): 1646-1654, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28072534

ABSTRACT

New Mg-containing antimonide Zintl phases, Sr14MgSb11 and Eu14MgSb11, were synthesized from high-temperature solid-state reactions in Ta tubes at 1323 K. Their structures can be viewed as derived from the Ca14AlSb11 structure type, which adopt the tetragonal space group I41/acd (No. 142, Z = 8) with the cell parameters of a = 17.5691(14)/17.3442(11) Å and c = 23.399(4)/22.981(3) Å for the Sr- and Eu-containing compounds, respectively. The corresponding thermoelectric properties were probed, which demonstrated high potential of these compounds as new thermoelectrics for their very low thermal conductivity and moderate Seebeck coefficient. Magnetism studies and theoretical calculations were conducted as well to better understand the structure-and-property correlation of these materials.

9.
Inorg Chem ; 56(17): 10576-10583, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28829598

ABSTRACT

A series of new magnesium bismuth Zintl phases, A14MgBi11 (A = Ca, Sr, Eu), have been synthesized, and their thermoelectric properties were systematically evaluated. These novel phases belong to the well-known Yb14MnSb11 family, whose structure adopts the tetragonal space group I41/acd (No. 142) with cell parameters of a = 17.0470(17)/17.854(2)/17.6660(7) Å and c = 22.665(5)/23.580(6)/23.2446(18) Å for Ca14MgBi11, Sr14MgBi11, and Eu14MgBi11, respectively. Without intentional optimization, these materials exhibit high potential as new thermoelectric candidates. Especially for Sr14MgBi11, a high zT value of 0.72 has been approached at 1073 K. The discovery of these new Zintl series is very interesting, which implies the high possibility of extending the 14-1-11 thermoelectric system to the bismuth analogues in the development of highly efficient thermoelectric materials. Density functional theory (DFT) calculations were incorporated as well to help better understand the properties of these important compounds.

10.
Angew Chem Int Ed Engl ; 55(10): 3447-50, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26889919

ABSTRACT

Hybrid perovskites have generated a great deal of interest because of their potential in photovoltaic applications. However, the toxicity of lead means that there is interest in finding a nontoxic substitute. Bulk single crystals of both cubic CH3NH3 SnI3 and CH(NH2)2 SnI3 were obtained by using the top-seeded solution growth method under an ambient atmosphere. Structural refinement, band gap, thermal properties, and XPS measurements of CH3NH3 SnI3 and CH(NH2)2 SnI3 single crystals are also reported in detail. These results should pave the way for further applications of CH3NH3 SnI3 and CH(NH2)2 SnI3.

11.
Inorg Chem ; 54(18): 8875-7, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26361335

ABSTRACT

Two new chiral Zintl compounds, Sr14Sn3As12 and Eu14Sn3As12, were synthesized from tin-flux reactions, and the structures were determined by using single-crystal X-ray diffraction. Both compounds crystallize in the trigonal space group R3 (No. 146, Z = 3) with the anion structures containing various units: dumbbell-shaped [Sn2As6](12-) dimers, [SnAs3](7-) triangular pyramids, and isolated As(3-) anions. Very interestingly, these two compounds exhibit opposite chirality in the observed crystal structures, resembling enantiomorphs. Detailed structure analyses suggest possible steric effects among the anion clusters, and on the basis of the calculated electronic structures, substantial electron lone pairs exist on the anions of both compounds, which may provide a hint to understanding the origination of chirality in these intermetallic compounds.

12.
Inorg Chem ; 54(3): 947-55, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25411723

ABSTRACT

The focus of this article is on the synthesis and structural characterization of the new ternary antimonides Eu(9)Cd(4+x)Sb(9) and Ca(9)Mn(4+x)Sb(9) (x ≈ (1)/2). Although these compounds have analogous chemical makeup and formulas, which may suggest isotypism, they actually belong to two different structure types. Eu(9)Cd(4.45(1))Sb(9) is isostructural with the previously reported Eu(9)Zn(4.5)Sb(9) (Pbam), and its structure has unit cell parameters a = 12.9178(11) Å, b = 23.025(2) Å, and c = 4.7767(4) Å. Ca(9)Mn(4.41(1))Sb(9) crystallizes in the orthorhombic space group Pnma with unit cell dimensions a = 12.490(2) Å, b = 4.6292(8) Å, and c = 44.197(8) Å and constitutes a new structure type. The two structures are compared and contrasted, and the structural relationships are discussed. Exploratory work aimed at the arsenic-based analogues of either type led to the identification of Ca(9)Zn(4.46(1))As(9), forming with the latter structure [a = 11.855(2) Å, b = 4.2747(8) Å, and c = 41.440(8) Å]. Differential thermal analysis and electrical resistivity measurements, performed on single crystals of Ca(9)Zn(4+x)As(9), indicate high thermal stability and semiconducting behavior. Magnetic susceptibility measurements on Eu(9)Cd(4+x)Sb(9) samples confirm the expected Eu(2+) ([Xe]4f(7)) ground state.

13.
J Colloid Interface Sci ; 660: 87-96, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38241874

ABSTRACT

Germanium (Ge) nanomaterials have emerged as promising anode materials for lithium-ion batteries (LIBs) due to their higher capacity compared to commercial graphite. However, their practical application has been limited by the high cost associated with harsh preparation conditions and the poor electrode cycling stability in charging and diacharging. In this study, we successfully synthesized crystalline Ge nanorods through the reaction of intermetallic compound CaGe and ZnCl2. Ge nanorods with different morphologies and crystallinity can be obtained through precisely controlling the reaction temperature. When employed as electrodes for LIBs, the Ge nanorods demonstrate exceptional long-term cyclic stability. Even after 1000 cycles at a high rate of 2C (1C = 1600 mA g-1), it exhibits a remarkable reversible capacity of around 1000 mAh/g. Furthermore, such Ge electrode displays excellent cycling performance across a wide temperature range. And it could achieve reversible capacities of 1267, 832, and 690 mAh/g, with the rate of 1C, at temperatures of 20, 0, and -20 °C, respectively. Above all, our study offers a cost-effective approach for the synthesis of crystalline Ge nanorods, addressing the concerns associated with high production costs. And the application of Ge nanorods as anode materials in LIBs over a wide temperature range opens up new possibilities for the development of advanced energy storage systems.

14.
ACS Appl Mater Interfaces ; 16(22): 28886-28895, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771993

ABSTRACT

Mg3Bi2-based materials are a very promising substitute for current commercial Bi2Te3 thermoelectric alloys. The successful growth of Mg3Bi2-based single crystals with high room-temperature performance is especially significant for practical applications. Previous studies indicated that the effective suppression of Mg defects in Mg3Bi2-based materials was crucial for high performance, which was usually realized by applying excessive Mg during syntheses. However, utilization of excessive Mg generates Mg-rich phases between the crystalline boundaries and is unfavorable for the long-term stability of the materials. Here, bulk single crystals with a low-content Mg component such as Mg3.1Bi1.49Sb0.5Te0.01 were successfully grown. For compensating Mg defects, Li was chosen as the additional electron dopant. The results indicate that Li is a very effective electron compensator when low-concentration doping is applied. For high-concentration doping, Mg atoms in the lattice are substituted by Li, leading to decreased electron concentration again. This strategy is very significant for improving the room-temperature performance of Mg3Bi2-based materials. As a result, a record-high figure of merit of 1.05 at 300 K is achieved for Mg3+xLi0.003Bi1.49Sb0.5Te0.01 single crystals.

15.
Small Methods ; : e2400640, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041431

ABSTRACT

La3-xTe4 is a very promising high-temperature candidate applied in next-generation Radioisotope Thermoelectric Generators (RTGs). Conventional synthesis of such materials is based on the mechanochemical method, which makes the sample difficult to purify due to the high-energy ball milling. In this report, a novel synthetic method is developed, which utilizes Te-vapor transport and solid-phase diffusion to efficiently produce the RE3-xTe4 phases (RE = La, Ce, Pr, Nd). Notably, this method obviates the requirement for high-energy ball-milling instruments, conventionally indispensable in the mechanochemical syntheses. For as-synthesized La2.74Te4 material, a high figure of merit of 1.5 is achieved at 1073 K, owning to the reduced electronic thermal conductivity with metal impurities well eliminated.

16.
J Am Chem Soc ; 135(32): 11840-8, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23869609

ABSTRACT

For materials used in high-temperature thermoelectric power generation, the choices are still quite limited. Here we demonstrate the design and synthesis of a new class of complex Zintl compounds, Ca(1-x)RE(x)Ag(1-y)Sb (RE = La, Ce, Pr, Nd, Sm) (P63mc, No. 186, LiGaGe-type), which exhibit a high figure of merit in the high-temperature region. Compared with the parent structure that is based on CaAgSb (Pnma, No. 62, TiNiSi-type), an interesting structural relationship is established which suggests that important size and electronic effects govern the formation of these multinary phases. According to theoretical calculations, such a structural transformation from the orthorhombic TiNiSi-type to the hexagonal LiGaGe-type also corresponds to an obvious modification in the electronic band structure, which explains the observed significant enhancement of the related thermoelectric properties. For an optimized p-type material, Ca(0.84)Ce(0.16)Ag(0.87)Sb, a figure of merit of ~0.7 can be achieved at 1079 K, which is comparable to that of Yb14MnSb11 at the same temperature. In addition, due to the excellent thermal stability and high electrical conductivity, these materials are very promising candidates for high-temperature thermoelectric power generation.

17.
Inorg Chem ; 52(20): 11836-42, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24079277

ABSTRACT

A new quaternary arsenide Zintl phase, Ba13Si6Sn8As22, has been synthesized from the Sn-flux reactions, and the structure was determined by the single-crystal X-ray diffraction methods. The compound crystallizes in the tetragonal non-centrosymmetric space group I42m (No. 121) with unit cell parameters of a = b = 14.4857(3) Å, c = 13.5506(7) Å, V = 2843.40(17) Å(3). Its polyanion structure can be viewed as composed of [Si4As10] adamantane-like clusters and SiAs4 tetrahedra, which are linked via the [Sn2As4] groups built through two edge-sharing SnAs3 triangular pyramids. Differential thermal analysis and thermogravimetry measurements indicate that Ba13Si6Sn8As22 has good thermal stability, and does not melt or decompose below 1045 K under Ar atmosphere. Density functional calculations were performed on Ba13Si6Sn8As22 and the results suggest a band gap of around 1.0 eV for Ba13Si6Sn8As22, confirmed by the diffuse reflectance spectrum measurement. In addition, the extensively existing lone pairs of electrons on the p-orbitals of As and Sn may also hint interesting nonlinear optical properties considering the noncentrosymmetric structure.

18.
J Colloid Interface Sci ; 650(Pt A): 236-246, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37406564

ABSTRACT

Two-dimensional germanane (2D GeH) is considered to be a potential anode material for lithium-ion batteries (LIBs) due to the unique structure and properties. In this study, an effective method for synthesizing GeH is proposed, involving the etching of ball-milled CaGe2 with dilute hydrochloric acid at room temperature for a short duration. The resulting GeH nanosheets exhibit uniformity and high yield without the need for harsh reaction conditions or repeated ultrasound and centrifugation treatments. Comparative analysis reveals that GeH fabricated using this method exhibit superior cycling stability when employed as electrode in LIBs in comparison with reported techniques. Specifically, the as-prepared GeH anode can achieve a specific capacity of 1320 mAh/g after 400 cycles at 0.2C (1C = 1600 mAh/g) and 1020 mAh/g after 1000 cycles at 1C. Furthermore, GeH//LiFePO4 full cell is assembled for evaluating its practical applications. The specific capacity remains stable, maintaining 108 mAh/g after 140 cycles at a current density of 1C (1C = 170 mAh/g). The results confirm that the nano refinement process presented in this study effectively simplifies the synthesis process and significantly enhances the anode stability of GeH materials in LIBs applications. Importantly, this work provides a promising and versatile approach for the mass production of 2D electrode materials with improved electrochemical performance.

19.
Inorg Chem ; 51(10): 5771-8, 2012 May 21.
Article in English | MEDLINE | ID: mdl-22564046

ABSTRACT

Two new ternary Zintl phases, Sr(5)Sn(2)As(6) and Eu(5)Sn(2)As(6), have been synthesized, and their structures have been accurately determined through single-crystal X-ray diffraction. Both compounds crystallize in orthorhombic space group Pbam (No. 55, Z = 2) with cell parameters of a = 12.482(3)/12.281(5) Å, b = 14.137(3)/13.941(5) Å, and c = 4.2440(10)/4.2029(16) Å for Sr(5)Sn(2)As(6) (R1 = 0.0341; wR2 = 0.0628) and Eu(5)Sn(2)As(6) (R1 = 0.0324; wR2 = 0.0766), respectively. Their structure belongs to the Sr(5)Sn(2)P(6) type, which can be closely related to the Ca(5)Ga(2)As(6) type. Electronic band structure calculations based on the density functional theory reveal an interesting electronic effect in the structure formation of these two types of Zintl phases, which substantially affect their corresponding electronic band structure. Related studies on the thermal stability, magnetism, and thermoelectric properties of Eu(5)Sn(2)As(6) are presented as well.

20.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 10): i77, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23125567

ABSTRACT

The previous structure determination of the title compound, dibarium tritelluridocadmate, was based on powder X-ray diffraction data [Wang & DiSalvo (1999 ▶). J. Solid State Chem.148, 464-467]. In the current redetermination from single-crystal X-ray data, all atoms were refined with anisotropic displacement parameters. The previous structure report is generally confirmed, but with some differences in bond lengths. Ba(2)CdTe(3) is isotypic with Ba(2)MX(3) (M = Mn, Cd; X = S, Se) and features (1) (∞)[CdTe(2/2)Te(2/1)](4-) chains of corner-sharing CdTe(4) tetra-hedra running parallel [010]. The two Ba(2+) cations are located between the chains, both within distorted monocapped trigonal-prismatic coordination polyhedra. All atoms in the structure are located on a mirror plane.

SELECTION OF CITATIONS
SEARCH DETAIL