Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Exp Bot ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271137

ABSTRACT

Angelica sinensis is a traditional Chinese herbal medicine with significant economic and medicinal value. However, early bolting and flowering can occur during the second year of the vegetative growth period, rendering the roots unviable for medicinal use and resulting in substantial economic losses. Consequently, the growing interest in studying the molecular mechanisms underlying early bolting or increased root lignification in A. sinensis. Here, we conducted whole-genome bisulfite sequencing and observed an increase in whole-genome DNA methylation levels on chromosomes after bolting in A. sinensis. Comparative analysis revealed methylation patterns in the upstream, gene body, and downstream regions in the context of CG, CHG, and CHH, suggesting a possible association between CHH-type methylation of promoters and phenylpropanoid biosynthesis. Furthermore, joint analysis of transcriptomic and methylomics data revealed a positive correlation between DNA methylation and gene expression. We identified the hyperDMR gene in the CHH background within the promoter region; this gene is also a key gene (AsCOMT1), exhibiting dual catalytic activity and facilitating the synthesis of both ferulic acid and lignin. Enzyme kinetic analysis demonstrated that AsCOMT1 preferentially catalyzes the synthesis of lignin monomer precursors. These findings highlight the important regulatory role of DNA methylation in bolting and the synthesis of secondary metabolites in A. sinensis, providing valuable insights into the underlying molecular mechanisms. Therefore, as DNA methylation plays an important regulatory role in A. sinensis bolting and secondary metabolite synthesis, it has potential significance in the analysis of the underlying molecular mechanism.

2.
Physiol Plant ; 176(5): e14500, 2024.
Article in English | MEDLINE | ID: mdl-39221482

ABSTRACT

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.


Subject(s)
Angelica sinensis , Anthocyanins , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Proteins , Angelica sinensis/genetics , Angelica sinensis/metabolism , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome/genetics , Pigmentation/genetics , Abscisic Acid/metabolism , Pigments, Biological/metabolism , Plant Roots/genetics , Plant Roots/metabolism
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446256

ABSTRACT

bHLH transcription factors are involved in multiple aspects of plant biology, such as the response to abiotic stress. Erigeron breviscapus is a composite plant, and its rich flavonoids have strong preventive and therapeutic effects on cardio cerebral vascular disease. EbbHLH80, a gene from E. breviscapus that positively regulates flavonoid synthesis, was previously characterized. However, it is unclear whether EbbHLH80 increases flavonoid accumulation, which affects salt tolerance. The function of EbbHLH80 in transgenic tobacco seeds was identified by phylogenetic analysis and metabolome-transcriptome analysis. We investigated the role of EbbHLH80 in salt stress response. Our results showed that the expression of EbbHLH80 increased following salt treatment. Integrating the metabolome and transcriptome analysis of EbbHLH80-OE and Yunyan 87 (WT) seeds, we identified several genes and metabolites related to flavonoid biosynthesis and salt stress. Moreover, EbbHLH80-OE plants displayed higher salt tolerance than wild-type plants during seed germination and seedling growth. After salt treatment, transgenic tobacco had significantly lower levels of reactive oxygen species (ROS) than WT, with enhanced levels of antioxidant enzyme expression. Altogether, our results demonstrated that EbbHLH80 might be a positive regulator, promoting salt tolerance by modulating ROS scavenging and increasing stress-responsive genes.


Subject(s)
Flavonoids , Plant Proteins , Reactive Oxygen Species/metabolism , Flavonoids/pharmacology , Flavonoids/metabolism , Plant Proteins/genetics , Phylogeny , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
4.
Heliyon ; 9(10): e20680, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37860513

ABSTRACT

In this study, total alkaloids from Hemsleya chinensis were extracted and tested for their antioxidant properties. To optimize extraction methods, a single factor experiment was conducted to determine the total alkaloid concentrations of H. chinensis using the L9 (34) orthogonal design test method and the BP neural network (BPNN), resulting in the optimum extraction conditions for total alkaloids. The optimal conditions for H. chinensis alkaloids extraction with acid water are: HCl concentration is 0.50 %, extraction temperature is 85 °C, material-liquid ratio is 1:64.5, and extraction rate of alkaloids is 0.2785 ± 0.0003 mg/mL. The alkaloid from H. chinensis exhibited antioxidant activity in a quantity-effect relationship with activity. These findings showed that the procedure to be reasonable, the alkaloid extraction efficiency to be high, and the method could be used to extract the alkaloids of H. chinensis, improving the development of natural and healthy medicinal resources for the pharmaceutical and food industries.

5.
Mol Hortic ; 3(1): 11, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37789448

ABSTRACT

Medicinal plants represent a huge reservoir of secondary metabolites (SMs), substances with significant pharmaceutical and industrial potential. However, obtaining secondary metabolites remains a challenge due to their low-yield accumulation in medicinal plants; moreover, these secondary metabolites are produced through tightly coordinated pathways involving many spatiotemporally and environmentally regulated steps. The first regulatory layer involves a complex network of transcription factors; a second, more recently discovered layer of complexity in the regulation of SMs is epigenetic modification, such as DNA methylation, histone modification and small RNA-based mechanisms, which can jointly or separately influence secondary metabolites by regulating gene expression. Here, we summarize the findings in the fields of genetic and epigenetic regulation with a special emphasis on SMs in medicinal plants, providing a new perspective on the multiple layers of regulation of gene expression.

6.
Front Plant Sci ; 14: 1138893, 2023.
Article in English | MEDLINE | ID: mdl-37056503

ABSTRACT

Hemsleya chinensis is a Chinese traditional medicinal plant, containing cucurbitacin IIa (CuIIa) and cucurbitacin IIb (CuIIb), both of which have a wide range of pharmacological effects, including antiallergic, anti-inflammatory, and anticancer properties. However, few studies have been explored on the key enzymes that are involved in cucurbitacins biosynthesis in H. chinensis. Oxidosqualene cyclase (OSC) is a vital enzyme for cyclizing 2,3-oxidosqualene and its analogues. Here, a gene encoding the oxidosqualene cyclase of H. chinensis (HcOSC6), catalyzing to produce cucurbitadienol, was used as a template of mutagenesis. With the assistance of AlphaFold2 and molecular docking, we have proposed for the first time to our knowledge the 3D structure of HcOSC6 and its binding features to 2,3-oxidosqualene. Mutagenesis experiments on HcOSC6 generated seventeen different single-point mutants, showing that single-residue changes could affect its activity. Three key amino acid residues of HcOSC6, E246, M261 and D490, were identified as a prominent role in controlling cyclization ability. Our findings not only comprehensively characterize three key residues that are potentially useful for producing cucurbitacins, but also provide insights into the significant role they could play in metabolic engineering.

7.
Front Plant Sci ; 13: 977649, 2022.
Article in English | MEDLINE | ID: mdl-36186051

ABSTRACT

Erigeron breviscapus is a Compositae plant, and its rich flavonoids have shown strong preventative and curative effects in the treatment of cardio- and cerebrovascular diseases. bHLH genes play a crucial role in plant growth and development. There are 116 EbbHLH genes in E. breviscapus, and each gene has been named based on its chromosome location. Our phylogenetic analysis divided these genes into 18 subfamilies. To further investigate its function, EbbHLH80 was isolated from E. breviscapus leaves. Next, transcriptomic and metabolomic analyses of tobacco leaves were performed. Among 421 differentially accumulated compounds, 98 flavonoids were identified. In addition, differentially expressed genes were identified using RNA-seq, and further analysis suggested that EbbHLH80-OE could not only regulate the expression of some structural genes in the flavonoid biosynthesis pathway to achieve flavonoid accumulation but also be involved in the regulation of a series of downstream pathways, such as stress response, ABA and ethylene signal transduction, to affect plant growth and development. The results of our analysis provide new insights into the function of EbbHLH80 and lay the foundation for future functional studies on E. breviscapus.

SELECTION OF CITATIONS
SEARCH DETAIL