Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Ecotoxicol Environ Saf ; 284: 116881, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39151372

ABSTRACT

Mulch coverage of mining tailings can create anaerobic conditions and consequently establish an anoxic environment that promotes the metabolic processes of anaerobic microorganisms. This anoxic environment has the potential to decrease heavy metal mobility and bioavailability. While tailings exposed to sunlight have been extensively studied, research on the effects of microbial-mediated geochemical cycling of heavy metals in mulch-covered tailings is scarce. This study aimed to examine the effects of mulch coverage-induced alterations in the structures of tailing microbial communities on the biogeochemical processes associated with heavy metals. Mulch coverage significantly reduced the pH of the tailings and the tailings exhibited heavy metal bioavailability. Random forest analysis demonstrated that mulch coverage-induced changes in the As/Cd-contaminated fractions and nutrients (total organic carbon and total nitrogen) were the most crucial predictors of microbial diversity and ecological clusters in the tailings. Notably, different from direct metal(loid) immobilization, mulch coverage can facilitate heavy metal immobilization in tailings by promoting microbial-mediated Fe, S, and As reduction. Overall, this study demonstrated that mulch coverage of tailings contributed to a reduction in heavy metal mobilization, which can be attributed to shifts in microbial-mediated Fe, S, and As reduction processes.The study provides valuable insights into the potential of mulch coverage as a remediation strategy and underscores the importance of microbial-mediated processes in managing heavy metal pollution in tailing systems.


Subject(s)
Metals, Heavy , Mining , Soil Pollutants , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil Microbiology , Biodegradation, Environmental
2.
Appl Environ Microbiol ; 89(11): e0096023, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37855640

ABSTRACT

IMPORTANCE: In this study, we revealed that the variation in rhizosphere and root endosphere microbial assemblage between host plant ecotypes contribute to their differential abilities to withstand cadmium (Cd) stressors. Furthermore, our study found that phenolic compounds, such as benzenoids and flavonoids, could function as both essential carbon sources and semiochemicals, thereby contributing to the assemblage of rhizosphere microbiome to resist Cd stress. Our findings provide new insights into the mechanisms that drive the differential assemblage of rhizosphere and root endosphere microbiomes to enhance plant growth under abiotic stress.


Subject(s)
Cadmium , Microbiota , Cadmium/toxicity , Soil Microbiology , Rhizosphere , Bacteria , Plant Roots
3.
Environ Res ; 216(Pt 2): 114573, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36243050

ABSTRACT

Tungsten (W) is a critical material that is widely used in military applications, electronics, lighting technology, power engineering and the automotive and aerospace industries. In recent decades, overexploitation of W has generated large amounts of mine waste rocks, which generate elevated content of toxic elements and cause serious adverse effects on ecosystems and public health. Microorganisms are considered important players in toxic element migrations from waste rocks. However, the understanding of how the microbial community structure varies in W mine waste rocks and its key driving factors is still unknown. In this study, high-throughput sequencing methods were used to determine the microbial community profiles along a W content gradient in W mine waste rocks. We found that the microbial community structures showed clear differences across the different W levels in waste rocks. Notably, arsenic (As), instead of W and nutrients, was identified as the most important predictor influencing microbial diversity. Furthermore, our results also showed that As is the most important environmental factor that regulates the distribution patterns of ecological clusters and keystone ASVs. Importantly, we found that the dominant genera have been regulated by As and were widely involved in As biogeochemical cycling in waste rocks. Taken together, our results have provided useful information about the response of microbial communities to W mine waste rocks.


Subject(s)
Arsenic , Microbiota , Tungsten
4.
Ecotoxicol Environ Saf ; 263: 115210, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37418943

ABSTRACT

This study investigated the distribution features of uranium-238 (238U), radium-226 (226Ra), thorium-232 (232Th), and potassium-40 (40K) and evaluated the associated environmental radiological hazards of the topsoil and river sediments in the Jinding lead-zinc (Pb-Zn) mine catchment from Southwest China. The activity concentrations of 238U, 226Ra, 232Th, and 40K ranged from 24.0 ± 2.29-60.3 ± 5.26 Bq.kg-1, from 32.5 ± 3.95-69.8 ± 3.39 Bq.kg-1, from 15.3 ± 2.24-58.3 ± 4.92 Bq.kg-1, and from 203 ± 10.2-1140 ± 27.4 Bq.kg-1, respectively. The highest activity concentrations for all these radionuclides were primarily found in the mining areas and decreased with increasing distance from the mining sites. The radiological hazard indices, including radium equivalent activity, absorbed gamma dose rate in the air, outdoor annual effective dose equivalent, annual gonadal dose equivalent, and excess lifetime cancer, revealed that the highest values were observed in the mining area and downstream, specifically in the vicinity of the ore body. These elevated values exceeded the global mean value but remained below the threshold value, suggesting that routine protection measures for Pb-Zn miners during production activities are sufficient. The correlation analysis and cluster analysis revealed strong associations between radionuclides such as 238U, 226Ra, and 232Th, indicating a common source of these radionuclides. The activity ratios of 226Ra/238U, 226Ra/232Th, and 238U/40K varied with distance, suggesting the influence of geological processes and lithological composition on their transport and accumulation. In the mining catchment areas, the variations in these activity ratios increased indicated the impact of limestone material dilution on the levels of 232Th, 40K, and 238U in the upstream region. Moreover, the presence of sulfide minerals in the mining soils contributed to the enrichment of 226Ra and the removal of 238U caused those activity ratios decreased in the mining areas. Therefore, in the Jinding PbZn deposit, the patterns of mining activities and surface runoff processes in the catchment area favored the accumulation of 232Th and 226Ra over 40K and 238U. This study provides the first case study on the geochemical distributions of natural radionuclides in a typical Mississippi Valley-type PbZn mining area and offers fundamental information on radionuclide migration and baseline radiometric data for PbZn deposits worldwide.


Subject(s)
Radiation Monitoring , Radium , Soil Pollutants, Radioactive , Uranium , Soil , Lead/analysis , Zinc/analysis , Radioisotopes/analysis , Uranium/analysis , Radium/analysis , Thorium/analysis , Soil Pollutants, Radioactive/analysis , Mining
5.
Environ Microbiol ; 24(2): 803-818, 2022 02.
Article in English | MEDLINE | ID: mdl-34081382

ABSTRACT

The relative abundance of Acidobacteriia correlated positively with the concentrations of arsenic (As), mercury (Hg), chromium (Cr), copper (Cu) and other metals, suggesting their adaptation of the metal-rich environments. Metagenomic binning reconstructed 29 high-quality metagenome-assembled genomes (MAGs) associated with Acidobacteriia, providing an opportunity to study their metabolic potentials. These MAGs contained genes to transform As, Hg and Cr through oxidation, reduction, efflux and demethylation, suggesting the potential of Acidobacteriia to transform such metal(loid)s. Additionally, genes associated with alleviation of acidic and metal stress were also detected in these MAGs. Acidobacteriia may have the capabilities to resist or transform metal(loid)s in acidic metal-contaminated sites. Moreover, these genes encoding metal transformation could be also identified in the Acidobacteriia-associated MAGs from five additional metal-contaminated sites across Southwest China, as well as Acidobacteriia-associated reference genomes from the NCBI database, suggesting that the capability of metal transformation may be widespread among Acidobacteriia members. This discovery provides an understanding of metabolic potentials of the Acidobacteriia in acidic metal-rich sites.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Environmental Monitoring , Environmental Pollution/analysis , Metagenome , Metals/analysis , Soil
6.
Environ Sci Technol ; 56(3): 2033-2043, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35006678

ABSTRACT

Biological nitrogen fixation (BNF) has important environmental implications in tailings by providing bioavailable nitrogen to these habitats and sustaining ecosystem functions. Previously, chemolithotrophic diazotrophs that dominate in mine tailings were shown to use reduced sulfur (S) as the electron donor. Tailings often contain high concentrations of As(III) that might function as an alternative electron donor to fuel BNF. Here, we tested this hypothesis and report on BNF fueled by As(III) oxidation as a novel biogeochemical process in addition to BNF fueled by S. Arsenic (As)-dependent BNF was detected in cultures inoculated from As-rich tailing samples derived from the Xikuangshan mining area in China, as suggested by nitrogenase activity assays, quantitative polymerase chain reaction, and 15N2 enrichment incubations. As-dependent BNF was also active in eight other As-contaminated tailings and soils, suggesting that the potential for As-dependent BNF may be widespread in As-rich habitats. DNA-stable isotope probing identified Serratia spp. as the bacteria responsible for As-dependent BNF. Metagenomic binning indicated that the essential genes for As-dependent BNF [i.e., nitrogen fixation, As(III) oxidation, and carbon fixation] were present in Serratia-associated metagenome-assembled genomes. Over 20 Serratia genomes obtained from NCBI also contained essential genes for both As(III) oxidation and BNF (i.e., aioA and nifH), suggesting that As-dependent BNF may be a widespread metabolic trait in Serratia spp.


Subject(s)
Arsenic , Nitrogen Fixation , Ecosystem , Nitrogen/analysis , Serratia/genetics , Serratia/metabolism , Soil Microbiology
7.
Appl Microbiol Biotechnol ; 106(18): 6289-6299, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36002692

ABSTRACT

Metal(loid) selection contributes to selection pressure on antibiotic resistance, but to our knowledge, evidence of the dissemination of antibiotic resistance genes (ARGs) induced by metal(loid)s in mine soil ecosystems is rare. In the current study, using a high-throughput sequencing (HTS)-based metagenomic approach, 819 ARG subtypes were identified in a mine soil ecosystem, indicating that these environmental habitats are important reservoirs of ARGs. The results showed that metal(loid)-induced coselection has an important role in the distribution of soil ARGs. Furthermore, metal(loid) selection-induced ARGs were mainly associated with resistance-nodulation-division (RND) antibiotic efflux, which is distinct from what is observed in agricultural soil ecosystems. By using independent genome binning, metal(loid)s were shown impose coselection pressure on multiple ARGs residing on mobile genetic elements (MGEs), which promotes the dissemination of the antibiotic resistome. Interestingly, the current results showed that the density of several MGEs conferring ARGs was considerably higher in organisms most closely related to the priority pathogens Pseudomonas aeruginosa and Escherichia coli. Together, the results of this study indicate that mine soil ecosystems are important reservoirs of ARGs and that metal(loid)-induced coselection plays critical roles in the dissemination of ARGs in this type of soil habitat. KEY POINTS: • Mining soil ecosystem is a reservoir of antibiotic resistance genes (ARGs). • ARGs distribute via bacterial resistance-nodulation-division efflux systems. • Metal(loid)s coselected ARGs residing on mobile genetic elements in P. aeruginosa and E. coli.


Subject(s)
Escherichia coli Proteins , Soil , Anti-Bacterial Agents/pharmacology , Cell Cycle Proteins/genetics , Drug Resistance, Microbial/genetics , Ecosystem , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Genes, Bacterial , Soil Microbiology
8.
Ecotoxicol Environ Saf ; 233: 113333, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35203006

ABSTRACT

Zinc (Zn) is an essential micronutrient for plants. However, excess Zn is toxic to non-accumulating plants like Arabidopsis thaliana. To cope with Zn toxicity, non-accumulating plants need to keep excess Zn in the less sensitive root tissues and restrict its translocation to the vulnerable shoot tissues, a process referred to as Zn immobilization in the root. However, the mechanism underlying Zn immobilization is not fully understood. In Arabidopsis, sequestration of excess Zn to the vacuole of root cells is crucial for Zn immobilization, facilitated by distinct tonoplast-localized transporters. As some members of the aquaporin superfamily have been implicated in transporting metal ions besides polar but non-charged small molecules, we tested whether Arabidopsis thaliana tonoplast intrinsic proteins (AtTIPs) could be involved in Zn immobilization and resistance. We found that AtTIP2;2 is involved in retaining excess Zn in the root, limiting its translocation to the shoot, and facilitating its accumulation in the leaf trichome. Furthermore, when expressed in yeast, the tonoplast-localized AtTIP2;2 renders glutathione (GSH)-dependent Zn resistance to yeast cells, suggesting that AtTIP2;2 facilitates the across-tonoplast transport of GSH-Zn complexes. Our findings provide new insights into aquaporins' roles in heavy metal resistance and detoxification in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plants, Genetically Modified/metabolism , Vacuoles/metabolism , Zinc/metabolism , Zinc/toxicity
9.
Environ Microbiol ; 23(4): 1959-1971, 2021 04.
Article in English | MEDLINE | ID: mdl-33145903

ABSTRACT

The assemblage of root-associated microorganisms plays important roles in improving their capability to adapt to environmental stress. Metal(loid) hyperaccumulators exhibit disparate adaptive capability compared to that of non-hyperaccumulators when faced with elevated contents of metal(loid)s. However, knowledge of the assemblage of root microbes of hyperaccumulators and their ecological roles in plant growth is still scarce. The present study used Pteris vittata as a model plant to study the microbial assemblage and its beneficial role in plant growth. We demonstrated that the assemblage of microbes from the associated bulk soil to the root compartment was based on their lifestyles. We used metagenomic analysis and identified that the assembled microbes were primarily involved in root-microbe interactions in P. vittata root. Notably, we identified that the assembled root microbiome played an important role in As requisition, which promoted the fitness and growth of P. vittata. This study provides new insights into the root microbiome and potential valuable knowledge to understand how the root microbiome contributes to the fitness of its host.


Subject(s)
Arsenic , Microbiota , Pteris , Soil Pollutants , Biodegradation, Environmental , Plant Roots , Soil Pollutants/analysis
10.
Microb Ecol ; 78(3): 589-602, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30725170

ABSTRACT

Arsenic (As) and antimony (Sb) are both toxic metalloids that are of primary concern for human health. Mining activity has introduced elevated levels of arsenic and antimony into the rivers and has increased the risks of drinking water contamination in China. Due to their mobility, the majority of the metalloids originating from mining activities are deposited in the river sediments. Thus, depending on various geochemical conditions, sediment could either be a sink or source for As and Sb in the water column. Microbes are key mediators for biogeochemical transformation and can both mobilize or precipitate As and Sb. To further understand the microbial community responses to As and Sb contamination, sediment samples with different contamination levels were collected from three rivers. The result of the study suggested that the major portions of As and Sb were in strong association with the sediment matrix and considered nonbioavailable. These fractions, however, were also suggested to have profound influences on the microbial community composition. As and Sb contamination caused strong reductions in microbial diversity in the heavily contaminated river sediments. Microorganisms were more sensitive to As comparing to Sb, as revealed by the co-occurrence network and random forest predictions. Operational taxonomic units (OTUs) that were potentially involved in As and Sb metabolism, such as Anaerolinea, Sphingomonas, and Opitutus, were enriched in the heavily contaminated samples. In contrast, many keystone taxa, including members of the Hyphomicrobiaceae and Bradyrhizobiaceae families, were inhibited by metalloid contamination, which could further impair crucial environmental services provided by these members.


Subject(s)
Antimony/analysis , Arsenic/analysis , Bacteria/isolation & purification , Geologic Sediments/microbiology , Microbiota , Rivers/microbiology , Water Pollutants, Chemical/analysis , Antimony/pharmacology , Arsenic/pharmacology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , China , Geologic Sediments/analysis , Rivers/chemistry , Water Pollutants, Chemical/pharmacology , Water Pollution/analysis
11.
Microb Ecol ; 78(3): 651-664, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30854582

ABSTRACT

Microbial communities inhabiting the acid mine drainage (AMD) have been extensively studied, but the microbial communities in the coal mining waste dump that may generate the AMD are still relatively under-explored. In this study, we characterized the microbial communities within these under-explored extreme habitats and compared with those in the downstream AMD creek. In addition, the interplay between the microbiota and the environmental parameters was statistically investigated. A Random Forest ensemble model indicated that pH was the most important environmental parameter influencing microbial community and diversity. Parameters associated with nitrogen cycling were also critical factors, with positive effects on microbial diversity, while S-related parameters had negative effects. The microbial community analysis also indicated that the microbial assemblage was driven by pH. Various taxa were enriched in different pH ranges: Sulfobacillus was the indicator genus in samples with pH < 3 while Acidobacteriaceae-affiliated bacteria prevailed in samples with 3 < pH < 3.5. The detection of some lineages that are seldom reported in mining areas suggested the coal mining dumps may be a reservoir of phylogenetic novelty. For example, potential nitrogen fixers, autotrophs, and heterotrophs may form diverse communities that actively self-perpetuate pyrite dissolution and acidic waste generation, suggesting unique ecological strategies adopted by these innate microorganisms. In addition, co-occurrence network analyses suggest that members of Acidimicrobiales play important roles in interactions with other taxa, especially Fe- and S-oxidizing bacteria such as Sulfobacillus spp.


Subject(s)
Bacteria/isolation & purification , Geologic Sediments/microbiology , Microbiota , Wastewater/microbiology , Acids/analysis , Acids/metabolism , Bacteria/classification , Bacteria/genetics , Coal Mining , Hydrogen-Ion Concentration , Iron/metabolism , Nitrogen/metabolism , Phylogeny , Sulfides/metabolism , Waste Disposal Facilities , Wastewater/analysis
12.
Appl Environ Microbiol ; 84(24)2018 12 15.
Article in English | MEDLINE | ID: mdl-30291123

ABSTRACT

In this study, we sampled rhizosphere soils from seven different agricultural fields adjacent to mining areas and cultivated with different crops (corn, rice, or soybean), to study the interactions among the innate microbiota, soil chemical properties, plants, and metal contamination. The rhizosphere bacterial communities were characterized by Illumina sequencing of the 16S rRNA genes, and their interactions with the local environments, including biotic and abiotic factors, were analyzed. Overall, these soils were heavily contaminated with multiple metal(loid)s, including V, Cr, Cu, Sb, Pb, Cd, and As. The interactions between environmental parameters and microbial communities were identified using multivariate regression tree analysis, canonical correspondence analysis, and network analysis. Notably, metal-microbe interactions were observed to be crop specific. The rhizosphere communities were strongly correlated with V and Cr levels, although these sites were contaminated from Sb and Zn/Pb mining, suggesting that these two less-addressed metals may play important roles in shaping the rhizosphere microbiota. Members of Gaiellaceae cooccurred with other bacterial taxa (biotic interactions) and several metal(loid)s, suggesting potential metal(loid) resistance or cycling involving this less-well-known taxon.IMPORTANCE The rhizosphere is the "hub" for plant-microbe interactions and an active region for exchange of nutrients and energy between soil and plants. In arable soils contaminated by mining activities, the rhizosphere may be an important barrier resisting metal uptake. Therefore, the responses of the rhizosphere microbiota to metal contamination involve important biogeochemical processes, which can affect metal bioavailability and thus impact food safety. However, understanding these processes remains a challenge. The current study illustrates that metal-microbe interactions may be crop specific and some less-addressed metals, such as V and Cr, may play important roles in shaping bacterial communities. The current study provides new insights into metal-microbe interactions and contributes to future implementation and monitoring efforts in contaminated arable soils.


Subject(s)
Bacteria/classification , Crops, Agricultural/microbiology , Metals/toxicity , Microbial Interactions/drug effects , Rhizosphere , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Bacteria/drug effects , Bacteria/genetics , Biodiversity , Biological Availability , Environmental Monitoring , Metals/analysis , Microbial Interactions/physiology , Microbiota/genetics , Mining , Multivariate Analysis , RNA, Ribosomal, 16S/genetics , Regression Analysis
13.
Microb Ecol ; 76(4): 976-990, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29728707

ABSTRACT

Autotrophs that inhabit soils receive less attention than their counterparts in other ecosystems, such as deep-sea and subsurface sediments, due to the low abundance of autotrophs in soils with high organic contents. However, the karst rocky desertification region is a unique ecosystem that may have a low level of organic compounds. Therefore, we propose that karst rocky desertification ecosystems may harbor diverse autotrophic microbial communities. In this study, DNA-SIP was employed to identify the chemolithoautotrophic bacteria inhabiting three soil types (i.e., grass, forest, and agriculture) of the karst rocky desertification ecosystems. The results indicated that potential chemolithoautotrophic population was observed in each soil type, even at different time points after amending 13C-NaHCO3, confirming our hypothesis that diverse autotrophs contribute to the carbon cycle in karst soils. Bacteria, such as Ralstonia, Ochrobactrum, Brevibacterium, Acinetobacter, and Corynebacterium, demonstrated their potential to assimilate inorganic carbon and reduce nitrate or thiosulfate as electron acceptors. Putative mixotrophs were identified by DNA-SIP as well, suggesting the metabolic versatility of soil microbiota. A co-occurrence network further indicated that autotrophs and heterotrophs may form associated communities to sustain the ecosystem function. Our current study revealed the metabolic diversity of autotrophic bacteria in soil habitats and demonstrated the potentially important role of chemoautotrophs in karst rocky desertification ecosystems.


Subject(s)
Bacteria/classification , Chemoautotrophic Growth , Desert Climate , Microbiota , Soil Microbiology , Soil/chemistry , Bacteria/growth & development , China , DNA, Bacterial/analysis , Ecosystem , Sequence Analysis, DNA
14.
Environ Sci Technol ; 52(22): 13370-13380, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30346157

ABSTRACT

Microorganisms inhabiting mine tailings require specific metabolic strategies to survive, which may hold potential for pollution clean up. Effective in situ bioremediation will rely on an in-depth understanding of the function of the bacterial communities, especially the abundant and metabolically active phylotypes. In this study, the bacterial communities collected from an alkaline tailing site were profiled by 16S rRNA gene amplicon sequencing as well as shotgun metagenomic analysis. Our results indicated that potentials for carbon and nitrogen fixation as well as metal resistance and transformation were widespread among the bacterial community members, especially in highly enriched phylotypes, such as members of Thiobacillus and Meiothermus. Important functional microbial guilds including carbon and nitrogen fixers may contribute to phytoremediation by providing nutrients for hyperaccumulator plants. In addition, metal-metabolizing bacteria may influence metal speciation and solubility. This discovery provides an understanding for microbial survival strategies in the tailings and lays the foundation for future potential manipulation of the tailing microbiome for in situ bioremediation.


Subject(s)
Bacteria , Microbiota , Biodegradation, Environmental , Metagenomics , RNA, Ribosomal, 16S
15.
Waste Manag Res ; 36(12): 1166-1176, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30112977

ABSTRACT

Rapid economic development accelerates the generation of municipal solid waste (MSW), and thereby calls for an effective and reliable waste management strategy. In the present work, we systematically investigated the status of MSW management in a mega-city of China (Guangzhou). The data were collected from literatures, government statistics and field sampling work. It can be found that a combination of waste sorting by individual residents and a necessary quantity of sanitation workers is one of the most feasible strategies to achieve a sustainable waste management. With implementation of that integrated strategy, approximately 0.03 million tons of metal, 0.24 million tons of paper, as well as 0.46 million tons of plastics can be recycled/recovered for further processing. A cost reduction of 70 million US$ is achieved in comparison with the un-optimized system due to the sale revenue of recyclable materials and the saving from waste disposal fees. The values of environmental assessment were expressed as environmental load units. The developed scenarios could decrease the environmental cost, namely, 0.66 million US$. Based on the studies, waste sorting is urgently needed in Guangzhou. However, to make the proposed strategy to be more economically feasible, the sorting should be performed individually as well as with public participation. The establishment of a win-win situation for all stakeholders is an effective path for the improvement of the integrated waste management system.


Subject(s)
Refuse Disposal , Waste Management , China , Cities , Humans , Solid Waste
16.
Environ Sci Technol ; 51(16): 9165-9175, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28700218

ABSTRACT

Mining of sulfide ore deposits containing metalloids, such as antimony and arsenic, has introduced serious soil contamination around the world, posing severe threats to food safety and human health. Hence, it is important to understand the behavior and composition of the microbial communities that control the mobilization or sequestration of these metal(loid)s. Here, we selected two sites in Southwest China with different levels of Sb and As contamination to study interactions among various Sb and As fractions and the soil microbiota, with a focus on the microbial response to metalloid contamination. Comprehensive geochemical analyses and 16S rRNA gene amplicon sequencing demonstrated distinct soil taxonomic inventories depending on Sb and As contamination levels. Stochastic gradient boosting indicated that citric acid extractable Sb(V) and As(V) contributed 5% and 15%, respectively, to influencing the community diversity. Random forest predicted that low concentrations of Sb(V) and As(V) could enhance the community diversity but generally, the Sb and As contamination impairs microbial diversity. Co-occurrence network analysis indicated a strong correlation between the indigenous microbial communities and various Sb and As fractions. A number of taxa were identified as core genera due to their elevated abundances and positive correlation with contaminant fractions (total Sb and As concentrations, bioavailable Sb and As extractable fractions, and Sb and As redox species). Shotgun metagenomics indicated that Sb and As biogeochemical redox reactions may exist in contaminated soils. All these observations suggest the potential for bioremediation of Sb- and As-contaminated soils.


Subject(s)
Antimony , Arsenic , Soil Microbiology , Soil Pollutants , China , Environmental Monitoring , Humans , Microbiota , RNA, Ribosomal, 16S , Soil
17.
Appl Microbiol Biotechnol ; 100(17): 7751-63, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27188777

ABSTRACT

To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.


Subject(s)
Antimony/pharmacology , Bacteria/classification , Bacteria/drug effects , Microbial Consortia/drug effects , Soil Pollutants/pharmacology , Antimony/analysis , Arsenic/analysis , Bacteria/genetics , Bacteria/metabolism , Biodiversity , China , DNA, Bacterial/genetics , Environmental Pollution , High-Throughput Nucleotide Sequencing , Mining , Soil Microbiology , Soil Pollutants/analysis
18.
Appl Microbiol Biotechnol ; 100(19): 8523-35, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27277134

ABSTRACT

A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities, suggesting that the microbial communities are shaped by three major environmental parameters (i.e., Fe, pH, and TOC). These findings were beneficial to a better understanding of natural attenuation of AMD.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Biota , Environmental Microbiology , Environmental Pollution , Iron/metabolism , Hydrogen-Ion Concentration , Soil/chemistry , Water/chemistry
19.
Appl Environ Microbiol ; 81(15): 4874-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25979900

ABSTRACT

Located in southwest China, the Aha watershed is continually contaminated by acid mine drainage (AMD) produced from upstream abandoned coal mines. The watershed is fed by creeks with elevated concentrations of aqueous Fe (total Fe > 1 g/liter) and SO4 (2-) (>6 g/liter). AMD contamination gradually decreases throughout downstream rivers and reservoirs, creating an AMD pollution gradient which has led to a suite of biogeochemical processes along the watershed. In this study, sediment samples were collected along the AMD pollution sites for geochemical and microbial community analyses. High-throughput sequencing found various bacteria associated with microbial Fe and S cycling within the watershed and AMD-impacted creek. A large proportion of Fe- and S-metabolizing bacteria were detected in this watershed. The dominant Fe- and S-metabolizing bacteria were identified as microorganisms belonging to the genera Metallibacterium, Aciditerrimonas, Halomonas, Shewanella, Ferrovum, Alicyclobacillus, and Syntrophobacter. Among them, Halomonas, Aciditerrimonas, Metallibacterium, and Shewanella have previously only rarely been detected in AMD-contaminated environments. In addition, the microbial community structures changed along the watershed with different magnitudes of AMD pollution. Moreover, the canonical correspondence analysis suggested that temperature, pH, total Fe, sulfate, and redox potentials (Eh) were significant factors that structured the microbial community compositions along the Aha watershed.


Subject(s)
Acids , Bacteria/classification , Bacteria/drug effects , Biota/drug effects , Geologic Sediments/microbiology , Water Pollutants , Water/chemistry , Bacteria/metabolism , China , Drainage , High-Throughput Nucleotide Sequencing , Hydrogen-Ion Concentration , Industrial Waste , Iron/metabolism , Molecular Sequence Data , Oxidation-Reduction , Sequence Analysis, DNA , Sulfur/metabolism , Temperature
20.
Appl Microbiol Biotechnol ; 99(6): 2911-22, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25408313

ABSTRACT

Five rice paddy soils located in southwest China were selected for geochemical and microbial community analysis. These rice fields were irrigated with river water which was contaminated by Fe-S-rich acid mine drainage. Microbial communities were characterized by high-throughput sequencing, which showed 39 different phyla/groups in these samples. Among these phyla/groups, Proteobacteria was the most abundant phylum in all samples. Chloroflexi, Acidobacteria, Nitrospirae, and Bacteroidetes exhibited higher relative abundances than other phyla. A number of rare and candidate phyla were also detected. Moreover, canonical correspondence analysis suggested that pH, sulfate, and nitrate were significant factors that shaped the microbial community structure. In addition, a wide diversity of Fe- and S-related bacteria, such as GOUTA19, Shewanella, Geobacter, Desulfobacca, Thiobacillus, Desulfobacterium, and Anaeromyxobacter, might be responsible for biogeochemical Fe and S cycles in the tested rice paddy soils. Among the dominant genera, GOUTA19 and Shewanella were seldom detected in rice paddy soils.


Subject(s)
Bacteria/classification , Mining , Oryza/microbiology , Soil Microbiology , Water Pollutants, Chemical/analysis , Acids , Bacteria/isolation & purification , Bacteroidetes/isolation & purification , Biomass , Chemical Phenomena , China , Geobacter/isolation & purification , Hydrogen-Ion Concentration , Iron/analysis , Nitrates/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Shewanella/isolation & purification , Soil/chemistry , Sulfates/analysis , Thiobacillus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL