Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36651657

ABSTRACT

MOTIVATION: Protein and peptide engineering has become an essential field in biomedicine with therapeutics, diagnostics and synthetic biology applications. Helices are both abundant structural feature in proteins and comprise a major portion of bioactive peptides. Precise design of helices for binding or biological activity is still a challenging problem. RESULTS: Here, we present HelixGAN, the first generative adversarial network method to generate de novo left-handed and right-handed alpha-helix structures from scratch at an atomic level. We developed a gradient-based search approach in latent space to optimize the generation of novel α-helical structures by matching the exact conformations of selected hotspot residues. The designed α-helical structures can bind specific targets or activate cellular receptors. There is a significant agreement between the helix structures generated with HelixGAN and PEP-FOLD, a well-known de novo approach for predicting peptide structures from amino acid sequences. HelixGAN outperformed RosettaDesign, and our previously developed structural similarity method to generate D-peptides matching a set of given hotspots in a known L-peptide. As proof of concept, we designed a novel D-GLP1_1 analog that matches the conformations of critical hotspots for the GLP1 function. MD simulations revealed a stable binding mode of the D-GLP1_1 analog coupled to the GLP1 receptor. This novel D-peptide analog is more stable than our previous D-GLP1 design along the MD simulations. We envision HelixGAN as a critical tool for designing novel bioactive peptides with specific properties in the early stages of drug discovery. AVAILABILITY AND IMPLEMENTATION: https://github.com/xxiexuezhi/helix_gan. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Deep Learning , Protein Conformation, alpha-Helical , Peptides/chemistry , Protein Structure, Secondary , Proteins
2.
J Chem Inf Model ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189360

ABSTRACT

Traditional computational methods for antibody design involved random mutagenesis followed by energy function assessment for candidate selection. Recently, diffusion models have garnered considerable attention as cutting-edge generative models, lauded for their remarkable performance. However, these methods often focus solely on the backbone or sequence, resulting in the incomplete depiction of the overall structure and necessitating additional techniques to predict the missing component. This study presents Antibody-SGM, an innovative joint structure-sequence diffusion model that addresses the limitations of existing protein backbone generation models. Unlike previous models, Antibody-SGM successfully integrates sequence-specific attributes and functional properties into the generation process. Our methodology generates full-atom native-like antibody heavy chains by refining the generation to create valid pairs of sequences and structures, starting with random sequences and structural properties. The versatility of our method is demonstrated through various applications, including the design of full-atom antibodies, antigen-specific CDR design, antibody heavy chains optimization, validation with Alphafold3, and the identification of crucial antibody sequences and structural features. Antibody-SGM also optimizes protein function through active inpainting learning, allowing simultaneous sequence and structure optimization. These improvements demonstrate the promise of our strategy for protein engineering and significantly increase the power of protein design models.

3.
ACS Cent Sci ; 10(5): 1001-1011, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38799672

ABSTRACT

Here, we present HelixDiff, a score-based diffusion model for generating all-atom helical structures. We developed a hot spot-specific generation algorithm for the conditional design of α-helices targeting critical hotspot residues in bioactive peptides. HelixDiff generates α-helices with near-native geometries for most test scenarios with root-mean-square deviations (RMSDs) less than 1 Å. Significantly, HelixDiff outperformed our prior GAN-based model with regard to sequence recovery and Rosetta scores for unconditional and conditional generations. As a proof of principle, we employed HelixDiff to design an acetylated GLP-1 D-peptide agonist that activated the glucagon-like peptide-1 receptor (GLP-1R) cAMP accumulation without stimulating the glucagon-like peptide-2 receptor (GLP-2R). We predicted that this D-peptide agonist has a similar orientation to GLP-1 and is substantially more stable in MD simulations than our earlier D-GLP-1 retro-inverse design. This D-peptide analogue is highly resistant to protease degradation and induces similar levels of AKT phosphorylation in HEK293 cells expressing GLP-1R compared to the native GLP-1. We then discovered that matching crucial hotspots for the GLP-1 function is more important than the sequence orientation of the generated D-peptides when constructing D-GLP-1 agonists.

SELECTION OF CITATIONS
SEARCH DETAIL