Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Neural Netw ; 166: 622-633, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37604073

ABSTRACT

In this paper, the fixed-time synchronization control for neural networks with discontinuous data communication is investigated. Due to the transmission blocking caused by DoS attack, it is intractable to establish a monotonically decreasing Lyapunov function like the conventional analysis of fixed-time stability. Therefore, by virtue of recursive and reduction to absurdity approaches, novel fixed-time stability criteria where the estimated upper bound of settling-time is inherently different from existing results are presented. Then, based on the developed conditions, an event-triggered control scheme that can avoid Zeno behavior is designed to achieve synchronization of master-slave neural networks under DoS attack within a prescribed time. For comparison, the established control scheme is further discussed under the case without DoS attack, and the circumstance that there is no attack or event-triggered mechanism, respectively. Simulation results are finally provided to illustrate the significant and validity of our theoretical research. Especially, in terms of encryption and decryption keys generated from the synchronization behavior of chaotic networks, we specifically discuss the application of the proposed fixed-time synchronization scheme to image and audio encryption.


Subject(s)
Communication , Neural Networks, Computer , Computer Simulation
2.
IEEE Trans Cybern ; 53(1): 102-113, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34236990

ABSTRACT

This article investigates the synchronization of communication-constrained complex dynamic networks subject to malicious attacks. An observer-based controller is designed by virtue of the bounded encode sequence derived from an improved coding-decoding communication protocol. Moreover, taking the security of data transmission into consideration, the denial-of-service attacks with the frequency and duration characterized by the average dwell-time constraint are introduced into data communication, and their influence on the coder string is analyzed explicitly. Thereafter, by imposing reasonable restrictions on the transmission protocol and the occurrence of attacks, the boundedness of coding intervals can be obtained. Since the precision of data is generally limited, it may lead to the situation that the signal to be encoded overflows the coding interval such that it results in the unavailability of the developed coding scheme. To cope with this problem, a dynamic variable is introduced to the design of the protocol. Subsequently, based on the Lyapunov stability theory, sufficient conditions for ensuring the input-to-state stability of the synchronization error systems under the communication-constrained condition and malicious attacks are presented. The validity of the developed method is finally verified by a simulation example of chaotic networks.

3.
IEEE Trans Neural Netw Learn Syst ; 34(1): 278-289, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34264831

ABSTRACT

In this article, the H∞ bipartite synchronization issue is studied for a class of discrete-time coupled switched neural networks with antagonistic interactions via a distributed dynamic event-triggered control scheme. Essentially different from most current literature, the topology switching of the investigated signed graph is governed by a double-layer switching signal, which integrates a flexible deterministic switching regularity, the persistent dwell-time switching, into a Markov chain to represent the variation of transition probability. Considering the coexistence of cooperative and antagonistic interactions among nodes, the bipartite synchronization of which the dynamics of nodes converge to values with the same modulus but the opposite signs is explored. A distributed control strategy based on the dynamic event-triggered mechanism is utilized to achieve this goal. Under this circumstance, the information update of the controller presents an aperiodic manner, and the frequency of data transmission can be reduced extensively. Thereafter, by constructing a novel Lyapunov function depending on both the switching signal and the internal dynamic nonnegative variable of the triggering mechanism, the exponential stability of bipartite synchronization error systems in the mean-square sense is analyzed. Finally, two simulation examples are provided to illustrate the effectiveness of the derived results.

4.
IEEE Trans Neural Netw Learn Syst ; 32(5): 2002-2014, 2021 May.
Article in English | MEDLINE | ID: mdl-32497011

ABSTRACT

This article is concerned with the issue of l2 - l∞ state estimation for nonlinear coupled networks, where the variation of coupling mode is governed by a set of switching signals satisfying a persistent dwell-time property. To solve the problem of data collisions in a constrained communication network, the round-robin protocol, as an important scheduling strategy for orchestrating the transmission order of sensor nodes, is introduced. Redundant channels with signal quantization are used to improve the reliability of data transmission. The main purpose is to determine an estimator that can guarantee the exponential stability in mean square sense and an l2 - l∞ performance level of the estimation error system. Based on the Lyapunov method, sufficient conditions for the addressed problem are established. The desired estimator gains can be obtained by addressing a convex optimization case. The correctness and availability of the developed approach are finally explained via two illustrative examples.

SELECTION OF CITATIONS
SEARCH DETAIL