Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Microbiol ; 24(1): 70, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418961

ABSTRACT

Perioperative neurocognitive dysfunction (PND) emerges as a common postoperative complication among elderly patients. Currently, the mechanism of PND remains unclear, but there exists a tendency to believe that inflammation plays a significant role in PND. Alterations in the abundance of intestinal microbiota can increase the permeability of the intestinal mucosal barrier and incite extraintestinal inflammatory responses. Metabolites from these microbiota can be absorbed by the intestinal mucosa into the bloodstream, exerting influence upon the central nervous system (CNS). Lactobacillus (Lac), serving as an intestinal probiotic bacterium, possesses the capacity to modulate emotional behavior and cognitive functions. Extracellular vesicles (EVs) are recognized as novel therapeutic carriers for targeted delivery to regulate physiology and pathogenesis. While the mechanism governing the primary function of Lac-EVs in the CNS remains uncertain. Therefore, we established an in vitro neuroinflammation model to induce PND and then treated the mice with Lac-EVs to observe the effect of these EVs on neuroinflammation, particularly on microglial (MG) polarization. Our research unveils that Lac-EVs reduced inflammation induced by LPS in microglia and the activation of related proteins, including the mRNA expression of M1 labeled protein (iNOS). Moreover, the mRNA expression of M2-labeled protein (Arg1) increased. In addition, flow cytometry revealed that the ratio of M1/M2 microglia also changed significantly. Therefore, Lac-EVs promoted the differentiation of M2 microglia by inducing the preferential expression of specific markers related to M2 macrophages and inflammation. In terms of inflammatory cytokine expression, Lac-EVs decreased the secretion of proinflammatory cytokines (IL-1ß and IL-6) and increased IL-10 production after lipopolysaccharide (LPS) stimulation. Therefore, Lac-EVs induce the activation of M2 microglial cells without inducing cellular harm in vitro, and they demonstrate anti-inflammatory effects against lipopolysaccharide-induced neuroinflammation. This finding suggested that it is an effective anti-inflammatory strategy for alleviating inflammation-driven PNDs.


Subject(s)
Extracellular Vesicles , Microglia , Humans , Mice , Animals , Aged , Microglia/metabolism , Lipopolysaccharides/metabolism , Neuroinflammatory Diseases , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Extracellular Vesicles/metabolism , RNA, Messenger/metabolism
2.
Neurochem Res ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340594

ABSTRACT

Postoperative delirium (POD) is a common complication in elderly surgical patients, with limited targeted interventions due to incomplete understanding of its pathophysiological mechanisms. Central nervous system (CNS) inflammation, involving glial cell activation, particularly astrocytes, is considered crucial in POD development. Butyrate, a four-carbon fatty acid, has shown protective effects in CNS diseases, but its potential in mitigating POD remains unclear. This study aimed to investigate the impact of sodium butyrate on POD in aged mice. Behavioral tests, including open field, Y maze, and food burying tests, demonstrated that sodium butyrate preconditioning ameliorated laparotomy-induced delirium in aged mice. Pre-treatment with sodium butyrate inhibited astrocyte activation in the hippocampus, reduced interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) expression levels, and protected hippocampal neurons. Furthermore, the study revealed a connection between gut microbiota regulation and central neuroprotective effects mediated by astrocyte activation inhibition. Sodium butyrate improved the intestinal morphological barrier by rebalancing gut microbiota, inhibiting Proteobacteria and Actinobacteria, reducing Allobaculum and Bacteroides abundance, and increasing Oscillospira abundance. This regulation decreased gut permeability, limiting the entry of toxic substances into the bloodstream, thereby reducing inflammation spread and astrocyte overactivation, leading to central anti-inflammatory effects. In conclusion, sodium butyrate may ameliorate POD by inhibiting astrocyte-mediated neuroinflammation through gut microbiota rebalancing.

SELECTION OF CITATIONS
SEARCH DETAIL